Spaces:
Runtime error
Runtime error
import torch | |
from transformers import pipeline | |
from datasets import load_dataset | |
from transformers import AutoModel | |
from transformers import pipeline, SpeechT5Processor, SpeechT5HifiGan, SpeechT5ForTextToSpeech | |
import numpy as np | |
import gradio as gr | |
# Configurar el pipeline de reconocimiento autom谩tico de voz | |
pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base") | |
# Load model directly | |
# Funci贸n para traducir texto | |
def translate(audio): | |
outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"}) | |
return outputs["text"] | |
# Cargar el procesador y el modelo de SpeechT5 | |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") | |
model = AutoModel.from_pretrained("gitgato/mabama") | |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") | |
# Cargar los datos de embeddings del hablante | |
embeddings_dataset = load_dataset("ovieyra21/mabama-v5", split="train") | |
speaker_embeddings = torch.tensor(embeddings_dataset[48]["xvector"]).unsqueeze(0) | |
# Funci贸n para sintetizar el habla | |
def synthesise(text): | |
inputs = processor(text=text, return_tensors="pt") | |
speech = model.generate(inputs["input_ids"], speaker_embedding=speaker_embeddings, vocoder=vocoder) | |
return speech.numpy() | |
# Configuraci贸n para el tipo de audio de salida | |
target_dtype = np.int16 | |
max_range = np.iinfo(target_dtype).max | |
# Funci贸n para traducci贸n de habla a habla | |
def speech_to_speech_translation(audio): | |
translated_text = translate(audio) | |
synthesised_speech = synthesise(translated_text) | |
synthesised_speech = (synthesised_speech * max_range).astype(np.int16) | |
return 16000, synthesised_speech | |
# Interfaz de Gradio | |
demo = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(sources=["microphone"], type="file", label="Input Audio"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
title="Speech-to-Speech Translation", | |
description="Translate speech input to synthesized speech output." | |
) | |
# Lanzar la interfaz | |
demo.launch(debug=True) | |