Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,60 +1,54 @@
|
|
1 |
import torch
|
2 |
from transformers import pipeline
|
3 |
from datasets import load_dataset
|
|
|
|
|
|
|
4 |
|
|
|
5 |
pipe = pipeline(
|
6 |
"automatic-speech-recognition", model="openai/whisper-base"
|
7 |
)
|
|
|
|
|
8 |
def translate(audio):
|
9 |
outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
10 |
return outputs["text"]
|
11 |
|
12 |
-
|
13 |
-
|
14 |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
15 |
-
|
16 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("gitgato/mabama")
|
17 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
18 |
|
|
|
19 |
embeddings_dataset = load_dataset("ovieyra21/mabama-v5", split="train")
|
20 |
-
speaker_embeddings = torch.tensor("
|
21 |
|
|
|
22 |
def synthesise(text):
|
23 |
inputs = processor(text=text, return_tensors="pt")
|
24 |
-
speech = model.
|
25 |
-
|
26 |
-
)
|
27 |
-
return speech.cpu()
|
28 |
-
|
29 |
-
import numpy as np
|
30 |
|
|
|
31 |
target_dtype = np.int16
|
32 |
max_range = np.iinfo(target_dtype).max
|
33 |
|
34 |
-
|
35 |
def speech_to_speech_translation(audio):
|
36 |
translated_text = translate(audio)
|
37 |
synthesised_speech = synthesise(translated_text)
|
38 |
-
synthesised_speech = (synthesised_speech
|
39 |
return 16000, synthesised_speech
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
demo = gr.Blocks()
|
44 |
-
|
45 |
-
mic_translate = gr.Interface(
|
46 |
-
fn=speech_to_speech_translation,
|
47 |
-
inputs=gr.Audio(sources=["microphone"], type="filepath"),
|
48 |
-
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
49 |
-
)
|
50 |
-
|
51 |
-
file_translate = gr.Interface(
|
52 |
fn=speech_to_speech_translation,
|
53 |
-
inputs=gr.Audio(sources=["
|
54 |
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
|
|
|
|
55 |
)
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
demo.launch(debug=True)
|
|
|
1 |
import torch
|
2 |
from transformers import pipeline
|
3 |
from datasets import load_dataset
|
4 |
+
from transformers import SpeechT5Processor, SpeechT5ForConditionalGeneration, SpeechT5HifiGan
|
5 |
+
import numpy as np
|
6 |
+
import gradio as gr
|
7 |
|
8 |
+
# Configurar el pipeline de reconocimiento autom谩tico de voz
|
9 |
pipe = pipeline(
|
10 |
"automatic-speech-recognition", model="openai/whisper-base"
|
11 |
)
|
12 |
+
|
13 |
+
# Funci贸n para traducir texto
|
14 |
def translate(audio):
|
15 |
outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
16 |
return outputs["text"]
|
17 |
|
18 |
+
# Cargar el procesador y el modelo de SpeechT5
|
|
|
19 |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
20 |
+
model = SpeechT5ForConditionalGeneration.from_pretrained("gitgato/mabama")
|
|
|
21 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
22 |
|
23 |
+
# Cargar los datos de embeddings del hablante
|
24 |
embeddings_dataset = load_dataset("ovieyra21/mabama-v5", split="train")
|
25 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[0]["speaker_embedding"]).unsqueeze(0)
|
26 |
|
27 |
+
# Funci贸n para sintetizar el habla
|
28 |
def synthesise(text):
|
29 |
inputs = processor(text=text, return_tensors="pt")
|
30 |
+
speech = model.generate(inputs["input_ids"], speaker_embedding=speaker_embeddings, vocoder=vocoder)
|
31 |
+
return speech.numpy()
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
# Configuraci贸n para el tipo de audio de salida
|
34 |
target_dtype = np.int16
|
35 |
max_range = np.iinfo(target_dtype).max
|
36 |
|
37 |
+
# Funci贸n para traducci贸n de habla a habla
|
38 |
def speech_to_speech_translation(audio):
|
39 |
translated_text = translate(audio)
|
40 |
synthesised_speech = synthesise(translated_text)
|
41 |
+
synthesised_speech = (synthesised_speech * max_range).astype(np.int16)
|
42 |
return 16000, synthesised_speech
|
43 |
|
44 |
+
# Interfaz de Gradio
|
45 |
+
demo = gr.Interface(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
fn=speech_to_speech_translation,
|
47 |
+
inputs=gr.Audio(sources=["microphone"], type="file", label="Input Audio"),
|
48 |
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
49 |
+
title="Speech-to-Speech Translation",
|
50 |
+
description="Translate speech input to synthesized speech output."
|
51 |
)
|
52 |
|
53 |
+
# Lanzar la interfaz
|
54 |
+
demo.launch(debug=True)
|
|
|
|