beyondrag / app.py
giulio98's picture
add comments
1a243e9
raw
history blame
30.4 kB
import copy
import math
import os
import time
from threading import Thread
import gradio as gr
import spaces
import torch
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
from docling.datamodel.pipeline_options import PdfPipelineOptions
from docling.document_converter import DocumentConverter, InputFormat, PdfFormatOption
from langchain.schema.document import Document
from langchain_chroma import Chroma
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from langchain_docling import DoclingLoader
from langchain_docling.loader import ExportType
from langchain_text_splitters import RecursiveCharacterTextSplitter
from transformers import AutoModelForCausalLM, AutoTokenizer, DynamicCache, TextIteratorStreamer
from transformers.models.llama.modeling_llama import rotate_half
from utils import (
calculate_tokens_suggest_compression_ratio,
repeat_kv,
update_retrieval_context,
)
# Initialize the model and tokenizer.
api_token = os.getenv("HF_TOKEN")
model_name = "meta-llama/Llama-3.1-8B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name, token=api_token)
model = AutoModelForCausalLM.from_pretrained(model_name, token=api_token, torch_dtype=torch.float16)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.eval()
model.to(device)
embedding_model = HuggingFaceBgeEmbeddings(
model_name="BAAI/bge-large-en-v1.5",
model_kwargs={"device": str(device)},
encode_kwargs={"normalize_embeddings": True},
query_instruction=""
)
# Create a chat template and split into prefix and suffix.
content_system = ""
content_user = "######"
user_template = [
{"role": "system", "content": content_system},
{"role": "user", "content": content_user}
]
user = tokenizer.apply_chat_template(user_template, add_generation_prompt=True, tokenize=False)
prefix, suffix = user.split(content_user)
sink_tokens = max(4, len(tokenizer.encode(prefix)))
# Default prompt content.
default_task_description = (
"Answer the question based on the given passages. "
"Only give me the answer and do not output any other words."
)
default_few_shot = """Examples
question: Which case was brought to court first Miller v. California or Gates v. Collier ?
answer: Miller v. California
question: The actor that plays Phileas Fogg in "Around the World in 80 Days", co-starred with Gary Cooper in a 1939 Goldwyn Productions film based on a novel by what author?
answer: Charles L. Clifford
question: Prior to playing for Michigan State, Keith Nichol played football for a school located in what city?
answer: Norman
"""
class FinchCache(DynamicCache):
def __init__(self) -> None:
super().__init__()
self.key_cache = []
self.value_cache = []
@staticmethod
def _rotate_half(x):
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def _apply_key_rotary_pos_emb(self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
return (key_states * cos) + (self._rotate_half(key_states) * sin)
@staticmethod
def _rerotate_cos_sin(x, inv_freq, important_pos_batch):
B, H, L = important_pos_batch.shape
device = important_pos_batch.device
device_type = x.device.type
dtype = x.dtype
idx = torch.arange(0, L, device=device)
idx = idx.unsqueeze(0)
inv_freq = inv_freq[None, None, :, None].float().expand(B, H, -1, 1) # (B, H, M, 1)
idx = idx[:, None, :].float().expand(B, H, L) # (B, H, L)
delta_pos = idx - important_pos_batch
delta_pos = delta_pos.unsqueeze(2) # (B, H, 1, L)
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = delta_pos.float() * inv_freq.float()
freqs = freqs.transpose(2, 3)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos().contiguous()
sin = emb.sin().contiguous()
return cos.to(dtype=dtype), sin.to(dtype=dtype)
@staticmethod
def gather_important_tokens(states, indices):
return torch.gather(states, 2, indices.unsqueeze(-1).expand(-1, -1, -1, states.size(3))).contiguous()
def compress_cache(self, layer_index, important_pos, inv_freq):
new_length = important_pos.size(2)
new_cos, new_sin = self._rerotate_cos_sin(self.key_cache[layer_index], inv_freq, important_pos)
gathered_keys = self.gather_important_tokens(self.key_cache[layer_index], important_pos).clone()
self.key_cache[layer_index] = self._apply_key_rotary_pos_emb(gathered_keys, new_cos, new_sin)
gathered_values = self.gather_important_tokens(self.value_cache[layer_index], important_pos).clone()
self.value_cache[layer_index] = gathered_values
self._seen_tokens = new_length
def save(self, path: str):
"""Save the cache to disk, moving tensors to CPU."""
try:
os.makedirs(os.path.dirname(path), exist_ok=True)
torch.save(
{"key_cache": [k.cpu() for k in self.key_cache], "value_cache": [v.cpu() for v in self.value_cache]},
path,
)
except Exception as e:
print(f"Error occurred while saving: {e}")
@classmethod
def load(cls, path: str, device: str = "cpu") -> "FinchCache":
"""Load the cache from disk and move tensors to the specified device."""
data = torch.load(path, map_location=device)
cache = cls()
cache.key_cache = [k.to(device) for k in data["key_cache"]]
cache.value_cache = [v.to(device) for v in data["value_cache"]]
cache._seen_tokens = cache.value_cache[0].size(2) if cache.value_cache else 0
return cache
def convert_to_markdown(file_objs, url, do_ocr, do_table_structure):
file_path = file_objs if file_objs is not None else url
pipeline_options = PdfPipelineOptions()
pipeline_options.do_ocr = do_ocr
pipeline_options.do_table_structure = do_table_structure
pdf_format_options = PdfFormatOption(
pipeline_options=pipeline_options,
backend=PyPdfiumDocumentBackend,
)
doc_converter = DocumentConverter(
allowed_formats=[InputFormat.PDF],
format_options={
InputFormat.PDF: pdf_format_options
}
)
# Pass the custom converter to the DoclingLoader.
loader = DoclingLoader(
file_path=file_path,
export_type=ExportType.MARKDOWN,
converter=doc_converter
)
docs = loader.load()
return docs[0].page_content
def create_rag_index(text_no_prefix):
"""Loads the PDF, splits its text, and builds a vectorstore for naive RAG."""
text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(
tokenizer,
chunk_size=256,
chunk_overlap=0,
add_start_index=True,
strip_whitespace=True,
separators=["\n\n", "\n", ".", " ", ""],
)
# Concatenate pages and create Document objects.
docs = [Document(page_content=x) for x in text_splitter.split_text(text_no_prefix)]
vectorstore = Chroma.from_documents(documents=docs, embedding=embedding_model)
return vectorstore
@spaces.GPU
def auto_convert(file_objs, url, do_ocr, do_table_structure):
if file_objs is None and (url is None or url.strip() == ""):
return (
gr.update(value=""),
"Number of tokens before compression: ",
gr.update(),
"Number of tokens after compression: ",
0,
gr.update(interactive=False), # Disable compress button when no input.
False,
{} # return an empty state dictionary
)
# Convert the document to markdown.
print("Converting to markdown")
markdown = convert_to_markdown(file_objs, url, do_ocr, do_table_structure)
print("Done")
combined_text = prefix + markdown
print("Calculating tokens")
token_count, suggestions, _ = calculate_tokens_suggest_compression_ratio(combined_text, tokenizer, model)
print("Done")
min_ratio = min(suggestions)
max_ratio = max(suggestions)
default_ratio = suggestions[len(suggestions) // 2]
retrieval_tokens = int(token_count / default_ratio)
token_count_str = f"Number of tokens before compression: {token_count}"
retrieval_str = f"Number of tokens after compression: {retrieval_tokens}"
slider_update = gr.update(value=default_ratio, minimum=min_ratio, maximum=max_ratio, step=1)
# Create the RAG index immediately.
if combined_text.startswith(prefix):
rag_text = combined_text[len(prefix):]
else:
rag_text = combined_text
print("Creating RAG index")
rag_index = create_rag_index(rag_text)
print("Done")
state = {"rag_index": rag_index}
return (
combined_text,
token_count_str,
slider_update,
retrieval_str,
token_count,
gr.update(interactive=True),
False,
state
)
def get_compressed_kv_cache(sink_tokens, step_size, target_token_size, context_ids, context_attention_mask, question_ids, question_attention_mask):
device = model.device
dtype = model.dtype
sink_tokens = sink_tokens
num_chunks = step_size
context_ids = context_ids.to(device)
context_attention_mask = context_attention_mask.to(device)
question_ids = question_ids.to(device)
question_attention_mask = question_attention_mask.to(device)
question_len = question_ids.size(1)
total_len = context_ids.size(1)
max_context_tokens_allowed = model.config.max_position_embeddings - question_len
if total_len > max_context_tokens_allowed:
num_chunks = max(step_size, math.ceil(total_len / max_context_tokens_allowed))
if total_len <= sink_tokens or num_chunks == 1:
# If the context is too short or only one chunk is desired, use the entire context.
context_ids_list = [context_ids]
context_attention_mask_list = [context_attention_mask]
else:
# Calculate how many tokens remain after the sink tokens.
remainder_len = total_len - sink_tokens
# Compute the base tokens per chunk and any leftover.
base = remainder_len // num_chunks
leftover = remainder_len % num_chunks
# Build a list of chunk sizes.
# First chunk gets the sink tokens plus base tokens.
chunk_sizes = [sink_tokens + base]
# Chunks 2 to num_chunks-1 get base tokens each.
for _ in range(num_chunks - 2):
chunk_sizes.append(base)
# The last chunk gets the remaining tokens (base + leftover).
if num_chunks > 1:
chunk_sizes.append(base + leftover)
# Now slice the context using the calculated sizes.
context_ids_list = []
context_attention_mask_list = []
offset = 0
for size in chunk_sizes:
end = offset + size
context_ids_list.append(context_ids[:, offset:end])
context_attention_mask_list.append(context_attention_mask[:, offset:end])
offset = end
# (Optional) Continue with the rest of your processing…
len_rest = max(total_len - sink_tokens, 1)
compression_factor = len_rest // target_token_size
if compression_factor < 1:
compression_factor = 1
tokenized_doc_chunks = []
for ids_chunk, mask_chunk in zip(context_ids_list, context_attention_mask_list):
tokenized_doc_chunks.append({"input_ids": ids_chunk, "attention_mask": mask_chunk})
print("Number of chunks: ", len(tokenized_doc_chunks))
rotary_emb = model.model.rotary_emb.to(device)
inv_freq = rotary_emb.inv_freq
batch_size = question_ids.size(0)
ones_mask = torch.ones(batch_size, 1, dtype=question_attention_mask.dtype, device=device)
cache = FinchCache()
past_cache_len = 0
past_attention_mask = torch.zeros(batch_size, 0, dtype=question_attention_mask.dtype, device=device)
num_chunks = len(tokenized_doc_chunks)
# Prepare a shared dictionary for hook outputs.
query_context_matrices = {}
# Define a hook function that uses a per-chunk offset stored on self.
def query_hook_fn(module, input, output):
layer_idx = getattr(module, "layer_idx", None)
if layer_idx is not None:
query_states = output.detach()
bsz, seq_len, hidden_dim = query_states.size()
num_query_heads = module.num_query_heads
head_dim = hidden_dim // num_query_heads
query_states = (
query_states.view(bsz, seq_len, num_query_heads, head_dim)
.transpose(1, 2)
.contiguous()
)
# Use self._current_chunk_offset to select only the new tokens.
query_context_matrices[layer_idx] = query_states[:, :, _current_chunk_offset:, :].clone()
# Pre-register hooks for all layers only once.
hooks = []
for i, layer in enumerate(model.model.layers):
layer.self_attn.q_proj.layer_idx = i # For tracking.
layer.self_attn.q_proj.num_query_heads = layer.self_attn.config.num_attention_heads
hook = layer.self_attn.q_proj.register_forward_hook(query_hook_fn)
hooks.append(hook)
# Process each document chunk sequentially.
for j, tokenized_doc_chunk in enumerate(tokenized_doc_chunks):
current_seq_length = tokenized_doc_chunk["input_ids"].size(1)
# Save the offset in an attribute the hook can access.
_current_chunk_offset = current_seq_length
# Clear the dictionary from any previous chunk.
query_context_matrices.clear()
# These chunks are already on the device.
chunk_input_ids = tokenized_doc_chunk["input_ids"].contiguous()
chunk_attention_mask = tokenized_doc_chunk["attention_mask"].contiguous()
segment_attention_mask = torch.cat(
[past_attention_mask, chunk_attention_mask, ones_mask], dim=-1
).contiguous()
current_input_ids = torch.cat([chunk_input_ids, question_ids], dim=-1).contiguous()
current_attention_mask = torch.cat([segment_attention_mask, question_attention_mask], dim=-1).contiguous()
past_seen_tokens = cache.get_seq_length() if cache is not None else 0
cache_position = torch.arange(
past_seen_tokens + chunk_input_ids.shape[1],
past_seen_tokens + current_input_ids.shape[1],
device=device
)
causal_mask = model.model._prepare_4d_causal_attention_mask_with_cache_position(
current_attention_mask,
sequence_length=question_ids.size(1),
target_length=current_attention_mask.size(-1),
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=current_input_ids.size(0),
).contiguous()
with torch.no_grad():
outputs = model.model(
input_ids=current_input_ids,
use_cache=True,
past_key_values=cache,
)
cache = outputs.past_key_values
len_question = question_ids.size(1)
# Now, for each transformer layer, update the cache using the query/key attention.
for layer_idx in range(len(model.model.layers)):
key_matrix = cache.key_cache[layer_idx]
query_matrix = query_context_matrices[layer_idx]
layer_cache_pos = torch.arange(
past_cache_len + current_seq_length,
past_cache_len + current_seq_length + len_question,
device=device
)
position_ids = layer_cache_pos.unsqueeze(0)
cos, sin = rotary_emb(query_matrix, position_ids)
cos = cos.unsqueeze(1)
sin = sin.unsqueeze(1)
query_matrix = (query_matrix * cos) + (rotate_half(query_matrix) * sin)
num_repeats = model.config.num_attention_heads // model.config.num_key_value_heads
key_matrix = repeat_kv(key_matrix, num_repeats)
scaling = math.sqrt(model.config.head_dim)
attention_matrix = torch.matmul(query_matrix, key_matrix.transpose(2, 3)) / scaling
causal_mask_sliced = causal_mask[:, :, :, : key_matrix.shape[-2]]
attention_matrix = attention_matrix + causal_mask_sliced
attention_matrix = torch.nn.functional.softmax(attention_matrix, dim=-1, dtype=torch.float32).to(query_matrix.dtype)
# Normalization
tol = 1e-8
binary_mask = (torch.abs(causal_mask_sliced.to(torch.float32)) < tol).to(torch.float32)
non_zero_counts = binary_mask.sum(dim=3, keepdim=True)
non_zero_counts = torch.clamp_min(non_zero_counts, 1.0).to(attention_matrix.dtype)
attention_matrix = attention_matrix / non_zero_counts
if j != num_chunks - 1:
attention_matrix = attention_matrix[:, :, :, : past_cache_len + current_seq_length].clone().contiguous()
else:
attention_matrix = attention_matrix[:, :, :, : past_cache_len + current_seq_length + len_question].clone().contiguous()
attention_matrix = torch.sum(attention_matrix, dim=-2)
attention_matrix = attention_matrix.view(
attention_matrix.size(0), model.config.num_key_value_heads, num_repeats, -1
).sum(dim=2)
full_context_size = attention_matrix.size(-1)
attention_matrix[..., :sink_tokens] = float("inf")
if j == num_chunks - 1:
attention_matrix[..., -len_question:] = float("inf")
if j == 0:
k = int(sink_tokens + (max(0, current_seq_length - sink_tokens) // compression_factor))
k = min(k + past_cache_len, full_context_size)
elif j < num_chunks - 1:
to_keep_new = int(current_seq_length // compression_factor)
k = min(past_cache_len + to_keep_new, full_context_size)
else:
desired_final = sink_tokens + target_token_size + len_question# TODO remember to include the question tokens
k = desired_final if full_context_size >= desired_final else full_context_size
k = max(k, sink_tokens)
selected_indices = torch.topk(attention_matrix, k, dim=-1).indices
selected_indices, _ = torch.sort(selected_indices, dim=-1)
cache.compress_cache(layer_idx, selected_indices, inv_freq)
past_cache_len = cache._seen_tokens
past_attention_mask = torch.ones(1, past_cache_len, device=device)
# Remove the hooks once after all chunks are processed.
for hook in hooks:
hook.remove()
return cache
def run_naive_rag_query(vectorstore, query, rag_token_size, prefix, task, few_shot_examples):
"""
For naive RAG, retrieves top-k chunks (k based on target token size)
and generates an answer using those chunks.
"""
k = max(1, rag_token_size // 256)
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": k})
retrieved_docs = retriever.invoke(query)
for doc in retrieved_docs:
print("=================")
print(doc.page_content)
print("=================")
formatted_context = "\n\n".join([doc.page_content for doc in retrieved_docs])
rag_context = prefix + "Retrieved context: \n" + formatted_context + task + few_shot_examples
return rag_context
@spaces.GPU
def prepare_compression_and_rag(combined_text, retrieval_slider_value, global_local_value, task_description, few_shot, state):
"""
Prepares the compressed KV cache. Uses the precomputed rag_index from state.
"""
percentage = int(global_local_value.replace('%', ''))
question_text = task_description + "\n" + few_shot
context_encoding = tokenizer(combined_text, return_tensors="pt").to(device)
question_encoding = tokenizer(question_text, return_tensors="pt").to(device)
context_ids = context_encoding["input_ids"]
context_attention_mask = context_encoding["attention_mask"]
question_ids = question_encoding["input_ids"]
question_attention_mask = question_encoding["attention_mask"]
retrieval_context_length = int(context_ids.size(1) / retrieval_slider_value)
if percentage > 0:
target_token_size = int(retrieval_context_length * (percentage / 100))
print("Target token size for compression: ", target_token_size)
step_size = 2
start_time_prefill = time.perf_counter()
past_key_values = copy.deepcopy(get_compressed_kv_cache(sink_tokens, step_size, target_token_size,
context_ids, context_attention_mask,
question_ids, question_attention_mask))
compressed_length = past_key_values.get_seq_length()
print("Context size after compression: ", compressed_length)
print("Compression rate: ", context_ids.size(1) / compressed_length)
else:
start_time_prefill = 0
target_token_size = 0
past_key_values = FinchCache()
compressed_length = past_key_values.get_seq_length()
# Use the precomputed rag_index from state.
rag_index = state.get("rag_index", None)
if rag_index is None:
if combined_text.startswith(prefix):
rag_text = combined_text[len(prefix):]
else:
rag_text = combined_text
rag_index = create_rag_index(rag_text, device)
state.update({
"compressed_cache": past_key_values,
"compressed_length": compressed_length,
"rag_index": rag_index,
"target_token_size": target_token_size,
"global_local": percentage,
"combined_text": combined_text,
"task_description": task_description,
"few_shot": few_shot,
"retrieval_slider": retrieval_context_length,
"prefill_time": time.perf_counter() - start_time_prefill
})
return state, True
@spaces.GPU
def chat_response_stream(message: str, history: list, state: dict):
"""
Generates a chat response with streaming output.
Returns a simple string (not a list of message dicts) for ChatInterface.
"""
user_message = message
past_key_values = state["compressed_cache"]
compressed_length = past_key_values.get_seq_length()
rag_index = state["rag_index"]
retrieval_slider_value = state["retrieval_slider"]
percentage = state["global_local"]
rag_retrieval_size = int(retrieval_slider_value * (1.0 - (percentage / 100)))
print("RAG retrieval size: ", rag_retrieval_size)
if percentage == 0:
rag_prefix = prefix
rag_task = state["task_description"]
rag_few_shot = state["few_shot"]
else:
rag_prefix = ""
rag_task = ""
rag_few_shot = ""
print("user message: ", user_message)
if rag_retrieval_size != 0:
rag_context = run_naive_rag_query(rag_index, user_message, rag_retrieval_size, rag_prefix, rag_task, rag_few_shot)
new_input = rag_context + "\nquestion: " + user_message + suffix + "answer:"
else:
new_input = "\nquestion: " + user_message + suffix + "answer:"
tokenized_new_input = tokenizer(new_input, return_tensors="pt").to(device)
eos_block = torch.full((1, compressed_length), tokenizer.eos_token_id, device=device, dtype=torch.long)
new_input_ids = torch.cat([eos_block, tokenized_new_input["input_ids"]], dim=-1)
new_attention_mask = torch.cat([torch.ones((1, compressed_length), device=device), tokenized_new_input["attention_mask"]], dim=-1)
print("New input is: ", new_input)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=new_input_ids,
attention_mask=new_attention_mask,
past_key_values=past_key_values,
streamer=streamer,
use_cache=True,
max_new_tokens=1024,
num_beams=1,
do_sample=False,
temperature=1.0,
top_p=1.0,
top_k=None,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
full_output = ""
for text in streamer:
full_output += text
time.sleep(0.05)
yield full_output
state["compressed_cache"] = past_key_values
return full_output
##########################################################################
# Gradio Interface: note that we now use ChatInterface instead of a Chatbot.
##########################################################################
CSS = """
body {
font-family: "Times New Roman", Times, serif;
}
.upload-section {
padding: 10px;
border: 2px dashed #ccc;
border-radius: 10px;
}
.upload-button {
background: #34c759 !important;
color: white !important;
border-radius: 25px !important;
}
.chatbot-container {
margin-top: 20px;
}
.status-output {
margin-top: 10px;
font-size: 14px;
}
.processing-info {
margin-top: 5px;
font-size: 12px;
color: #666;
}
.info-container {
margin-top: 10px;
padding: 10px;
border-radius: 5px;
}
.file-list {
margin-top: 0;
max-height: 200px;
overflow-y: auto;
padding: 5px;
border: 1px solid #eee;
border-radius: 5px;
}
.stats-box {
margin-top: 10px;
padding: 10px;
border-radius: 5px;
font-size: 12px;
}
.submit-btn {
background: #1a73e8 !important;
color: white !important;
border-radius: 25px !important;
margin-left: 10px;
padding: 5px 10px;
font-size: 16px;
}
.input-row {
display: flex;
align-items: center;
}
@media (min-width: 768px) {
.main-container {
display: flex;
justify-content: space-between;
gap: 20px;
}
.upload-section {
flex: 3;
}
.chatbot-container {
flex: 1;
margin-top: 0;
}
}
"""
with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
gr.HTML("<h1><center>Beyond RAG with LLama 3.1-8B-Instruct Model</center></h1>")
gr.HTML("<center><p>Compress your document and chat with it.</p></center>")
hidden_token_count = gr.State(value=0)
compression_done = gr.State(value=False)
compressed_doc_state = gr.State(value={})
with gr.Row(elem_classes="main-container"):
with gr.Column(elem_classes="upload-section"):
gr.Markdown("## Document Preprocessing")
with gr.Row():
file_input = gr.File(label="Drop file here or upload", file_count="multiple", elem_id="file-upload-area")
url_input = gr.Textbox(label="or enter a URL", placeholder="https://example.com/document.pdf")
with gr.Row():
do_ocr = gr.Checkbox(label="Do OCR", value=False)
do_table = gr.Checkbox(label="Include Table Structure", value=False)
with gr.Accordion("Prompt Designer", open=False):
task_description_input = gr.Textbox(label="Task Description", value=default_task_description, lines=3, elem_id="task-description")
few_shot_input = gr.Textbox(label="Few-Shot Examples", value=default_few_shot, lines=10, elem_id="few-shot")
with gr.Accordion("Show Markdown Output", open=False):
markdown_output = gr.Textbox(label="Markdown Output", lines=20)
token_count_text = gr.Markdown("Number of tokens before compression: ")
retrieval_slider = gr.Slider(label="Select Compression Rate", minimum=1, maximum=32, step=1, value=2)
retrieval_info_text = gr.Markdown("Number of tokens after compression: ")
global_local_slider = gr.Radio(label="Global vs Local (0 is all RAG, 100 is all global)",
choices=["0%", "25%", "50%", "75%", "100%"], value="75%")
compress_button = gr.Button("Compress Document", interactive=False, elem_classes="upload-button")
file_input.change(
fn=auto_convert,
inputs=[file_input, url_input, do_ocr, do_table],
outputs=[markdown_output, token_count_text, retrieval_slider, retrieval_info_text, hidden_token_count, compress_button, compression_done, compressed_doc_state]
)
url_input.change(
fn=auto_convert,
inputs=[file_input, url_input, do_ocr, do_table],
outputs=[markdown_output, token_count_text, retrieval_slider, retrieval_info_text, hidden_token_count, compress_button, compression_done, compressed_doc_state]
)
do_ocr.change(
fn=auto_convert,
inputs=[file_input, url_input, do_ocr, do_table],
outputs=[markdown_output, token_count_text, retrieval_slider, retrieval_info_text, hidden_token_count, compress_button, compression_done, compressed_doc_state]
)
do_table.change(
fn=auto_convert,
inputs=[file_input, url_input, do_ocr, do_table],
outputs=[markdown_output, token_count_text, retrieval_slider, retrieval_info_text, hidden_token_count, compress_button, compression_done, compressed_doc_state]
)
retrieval_slider.change(
fn=update_retrieval_context,
inputs=[hidden_token_count, retrieval_slider],
outputs=retrieval_info_text
)
compress_button.click(
fn=prepare_compression_and_rag,
inputs=[markdown_output, retrieval_slider, global_local_slider, task_description_input, few_shot_input, compressed_doc_state],
outputs=[compressed_doc_state, compression_done]
)
with gr.Column(elem_classes="chatbot-container"):
gr.Markdown("## Chat")
chat_interface = gr.ChatInterface(
fn=chat_response_stream,
additional_inputs=[compressed_doc_state],
type="messages"
)
demo.queue().launch()