beyondrag / app.py
giulio98's picture
Update app.py
713bacc verified
import copy
import math
import os
import time
from threading import Thread
import uuid
import gradio as gr
import spaces
import torch
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
from docling.datamodel.pipeline_options import PdfPipelineOptions
from docling.document_converter import DocumentConverter, InputFormat, PdfFormatOption
from langchain.schema.document import Document
from langchain_chroma import Chroma
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from langchain_docling import DoclingLoader
from langchain_docling.loader import ExportType
from langchain_text_splitters import RecursiveCharacterTextSplitter
from transformers import AutoModelForCausalLM, AutoTokenizer, DynamicCache, TextIteratorStreamer, BitsAndBytesConfig #, Gemma3ForCausalLM
from transformers.models.llama.modeling_llama import rotate_half
import threading
import shutil
import time
from utils import (
calculate_tokens_suggest_compression_ratio,
repeat_kv,
update_retrieval_context,
)
# Initialize the model and tokenizer.
api_token = os.getenv("HUGGING_FACE_HUB_TOKEN")
model_name = "meta-llama/Llama-3.1-8B-Instruct"
# model_name = "google/gemma-3-27b-it"
tokenizer = AutoTokenizer.from_pretrained(model_name, token=api_token)
# quantization_config = BitsAndBytesConfig(load_in_8bit=True)
model = AutoModelForCausalLM.from_pretrained(model_name, token=api_token, torch_dtype=torch.float16)
# model = Gemma3ForCausalLM.from_pretrained(model_name, token=api_token, quantization_config=quantization_config, torch_dtype="auto")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.eval()
model.to(device)
embedding_model = HuggingFaceBgeEmbeddings(
model_name="BAAI/bge-large-en-v1.5",
model_kwargs={"device": str(device)},
encode_kwargs={"normalize_embeddings": True},
query_instruction=""
)
# Create a chat template and split into prefix and suffix.
content_system = ""
content_user = "######"
user_template = [
{"role": "system", "content": content_system},
{"role": "user", "content": content_user}
]
user = tokenizer.apply_chat_template(user_template, add_generation_prompt=True, tokenize=False)
prefix, suffix = user.split(content_user)
sink_tokens = max(4, len(tokenizer.encode(prefix)))
# Default prompt content.
default_task_description = (
"Answer the question based on the provided context."
"Provide only the answer and no additional explanations."
)
default_few_shot = """Examples
context: Climate change is primarily driven by human activities such as burning fossil fuels, deforestation, and industrial processes, which release large amounts of greenhouse gases into the atmosphere, causing global temperatures to rise.
question: What are the main human activities contributing to climate change?
answer: The main human activities contributing to climate change include burning fossil fuels, deforestation, and various industrial processes that emit greenhouse gases.
context: The Renaissance was a cultural movement spanning roughly from the 14th to the 17th century, marked by renewed interest in classical learning and values, advancements in art, literature, and scientific inquiry, and significant cultural developments.
question: What characterized the Renaissance period?
answer: The Renaissance period was characterized by a revival of classical learning, significant advancements in art and literature, and notable developments in scientific inquiry and cultural values.
context: The theory of evolution by natural selection, proposed by Charles Darwin, explains how species adapt and evolve over generations based on the survival and reproduction of individuals best suited to their environment.
question: How does Darwin's theory of evolution explain the adaptation of species?
answer: Darwin's theory explains that species adapt and evolve through natural selection, where individuals best suited to their environment are more likely to survive and reproduce.
"""
CHROMA_DB_DIR = "./chroma_db"
CACHE_DIR = "./cache_dir"
EXPIRATION_SECONDS = 3600
def background_cleanup():
while True:
current_time = int(time.time())
# Clean Chroma collections
if os.path.exists(CHROMA_DB_DIR):
for dirname in os.listdir(CHROMA_DB_DIR):
parts = dirname.split("_")
if len(parts) >= 3 and parts[1].isdigit():
timestamp = int(parts[1])
if current_time - timestamp > EXPIRATION_SECONDS:
path = os.path.join(CHROMA_DB_DIR, dirname)
shutil.rmtree(path, ignore_errors=True)
print(f"[Cleanup] Deleted Chroma collection: {path}")
# Clean cache files
if os.path.exists(CACHE_DIR):
for filename in os.listdir(CACHE_DIR):
parts = filename.split("_")
if len(parts) >= 3 and parts[1].isdigit():
timestamp = int(parts[1])
if current_time - timestamp > EXPIRATION_SECONDS:
path = os.path.join(CACHE_DIR, filename)
os.remove(path)
print(f"[Cleanup] Deleted cache file: {path}")
time.sleep(600)
cleanup_thread = threading.Thread(target=background_cleanup, daemon=True)
cleanup_thread.start()
class FinchCache(DynamicCache):
def __init__(self) -> None:
super().__init__()
self.key_cache = []
self.value_cache = []
@staticmethod
def _rotate_half(x):
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def _apply_key_rotary_pos_emb(self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
return (key_states * cos) + (self._rotate_half(key_states) * sin)
@staticmethod
def _rerotate_cos_sin(x, inv_freq, important_pos_batch):
B, H, L = important_pos_batch.shape
device = important_pos_batch.device
device_type = x.device.type
dtype = x.dtype
idx = torch.arange(0, L, device=device)
idx = idx.unsqueeze(0)
inv_freq = inv_freq[None, None, :, None].float().expand(B, H, -1, 1) # (B, H, M, 1)
idx = idx[:, None, :].float().expand(B, H, L) # (B, H, L)
delta_pos = idx - important_pos_batch
delta_pos = delta_pos.unsqueeze(2) # (B, H, 1, L)
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = delta_pos.float() * inv_freq.float()
freqs = freqs.transpose(2, 3)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos().contiguous()
sin = emb.sin().contiguous()
return cos.to(dtype=dtype), sin.to(dtype=dtype)
@staticmethod
def gather_important_tokens(states, indices):
return torch.gather(states, 2, indices.unsqueeze(-1).expand(-1, -1, -1, states.size(3))).contiguous()
def compress_cache(self, layer_index, important_pos, inv_freq):
new_length = important_pos.size(2)
new_cos, new_sin = self._rerotate_cos_sin(self.key_cache[layer_index], inv_freq, important_pos)
gathered_keys = self.gather_important_tokens(self.key_cache[layer_index], important_pos).clone()
self.key_cache[layer_index] = self._apply_key_rotary_pos_emb(gathered_keys, new_cos, new_sin)
gathered_values = self.gather_important_tokens(self.value_cache[layer_index], important_pos).clone()
self.value_cache[layer_index] = gathered_values
self._seen_tokens = new_length
def save(self, path: str):
try:
os.makedirs(os.path.dirname(path), exist_ok=True)
torch.save(
{"key_cache": [k.cpu() for k in self.key_cache], "value_cache": [v.cpu() for v in self.value_cache]},
path,
)
except Exception as e:
print(f"Error occurred while saving: {e}")
@classmethod
def load(cls, path: str, device: str = "cpu") -> "FinchCache":
data = torch.load(path, map_location=device)
cache = cls()
cache.key_cache = [k.to(device) for k in data["key_cache"]]
cache.value_cache = [v.to(device) for v in data["value_cache"]]
cache._seen_tokens = cache.value_cache[0].size(2) if cache.value_cache else 0
return cache
def convert_to_markdown(file_objs, url, do_ocr, do_table_structure):
file_path = file_objs if file_objs is not None else url
pipeline_options = PdfPipelineOptions()
pipeline_options.do_ocr = do_ocr
pipeline_options.do_table_structure = do_table_structure
pdf_format_options = PdfFormatOption(
pipeline_options=pipeline_options,
backend=PyPdfiumDocumentBackend,
)
doc_converter = DocumentConverter(
allowed_formats=[InputFormat.PDF],
format_options={InputFormat.PDF: pdf_format_options}
)
loader = DoclingLoader(
file_path=file_path,
export_type=ExportType.MARKDOWN,
converter=doc_converter
)
try:
docs = loader.load()
return docs[0].page_content
except Exception as e:
raise RuntimeError(f"Failed to convert document to markdown: {e}")
def create_rag_index(collection_name, text_no_prefix):
text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(
tokenizer,
chunk_size=256,
chunk_overlap=0,
add_start_index=True,
strip_whitespace=True,
separators=["\n\n", "\n", ".", " ", ""],
)
docs = [Document(page_content=x) for x in text_splitter.split_text(text_no_prefix)]
vectorstore = Chroma.from_documents(collection_name=collection_name, persist_directory="./chroma_db", documents=docs, embedding=embedding_model)
return vectorstore
@spaces.GPU
def auto_convert(file_objs, url, do_ocr, do_table_structure):
# When a new file/URL is loaded, disable chat (compression not done)
chat_status = "Document not compressed yet. Please compress the document to enable chat."
if file_objs is None and (url is None or url.strip() == ""):
return (
gr.update(value=""),
"Number of tokens before compression: ",
gr.update(),
"Number of tokens after compression: ",
0,
gr.update(interactive=False),
False,
{},
chat_status
)
print("Converting to markdown")
try:
markdown = convert_to_markdown(file_objs, url, do_ocr, do_table_structure)
except RuntimeError as e:
return (
gr.update(value=f"{str(e)} Please try uploading another document format."),
"Number of tokens before compression: ",
gr.update(),
"Number of tokens after compression: ",
0,
gr.update(interactive=False),
False,
{},
chat_status
)
print("Done")
combined_text = prefix + markdown
print("Suggestioning Compression ratio")
token_count, suggestions, _ = calculate_tokens_suggest_compression_ratio(combined_text, tokenizer, model)
print("Done")
min_ratio = min(suggestions)
max_ratio = max(suggestions)
default_ratio = 4
retrieval_tokens = int(token_count / default_ratio)
token_count_str = f"Number of tokens before compression: {token_count}"
retrieval_str = f"Number of tokens after compression: {retrieval_tokens}"
slider_update = gr.update(value=default_ratio, minimum=min_ratio, maximum=max_ratio, step=1)
if combined_text.startswith(prefix):
rag_text = combined_text[len(prefix):]
else:
rag_text = combined_text
current_timestamp = int(time.time())
collection_name = f"default_{current_timestamp}_{uuid.uuid4().hex[:6]}"
rag_index = create_rag_index(collection_name, rag_text)
state = {"rag_index": collection_name}
print("Done")
return (
combined_text,
token_count_str,
slider_update,
retrieval_str,
token_count,
gr.update(interactive=True), # Enable compress button if conversion succeeds.
False,
state,
chat_status
)
def get_compressed_kv_cache(sink_tokens, step_size, target_token_size, context_ids, context_attention_mask, question_ids, question_attention_mask):
try:
device = model.device
dtype = model.dtype
sink_tokens = sink_tokens
num_chunks = step_size
context_ids = context_ids.to(device)
context_attention_mask = context_attention_mask.to(device)
question_ids = question_ids.to(device)
question_attention_mask = question_attention_mask.to(device)
question_len = question_ids.size(1)
total_len = context_ids.size(1)
max_context_tokens_allowed = model.config.max_position_embeddings - question_len
if total_len > max_context_tokens_allowed:
num_chunks = max(step_size, math.ceil(total_len / max_context_tokens_allowed))
if total_len <= sink_tokens or num_chunks == 1:
context_ids_list = [context_ids]
context_attention_mask_list = [context_attention_mask]
else:
remainder_len = total_len - sink_tokens
base = remainder_len // num_chunks
leftover = remainder_len % num_chunks
chunk_sizes = [sink_tokens + base]
for _ in range(num_chunks - 2):
chunk_sizes.append(base)
if num_chunks > 1:
chunk_sizes.append(base + leftover)
context_ids_list = []
context_attention_mask_list = []
offset = 0
for size in chunk_sizes:
end = offset + size
context_ids_list.append(context_ids[:, offset:end])
context_attention_mask_list.append(context_attention_mask[:, offset:end])
offset = end
len_rest = max(total_len - sink_tokens, 1)
compression_factor = len_rest // target_token_size
if compression_factor < 1:
compression_factor = 1
tokenized_doc_chunks = []
for ids_chunk, mask_chunk in zip(context_ids_list, context_attention_mask_list):
tokenized_doc_chunks.append({"input_ids": ids_chunk, "attention_mask": mask_chunk})
print("Number of chunks: ", len(tokenized_doc_chunks))
rotary_emb = model.model.rotary_emb.to(device)
inv_freq = rotary_emb.inv_freq
batch_size = question_ids.size(0)
ones_mask = torch.ones(batch_size, 1, dtype=question_attention_mask.dtype, device=device)
cache = FinchCache()
past_cache_len = 0
past_attention_mask = torch.zeros(batch_size, 0, dtype=question_attention_mask.dtype, device=device)
num_chunks = len(tokenized_doc_chunks)
query_context_matrices = {}
def query_hook_fn(module, input, output):
layer_idx = getattr(module, "layer_idx", None)
if layer_idx is not None:
query_states = output.detach()
bsz, seq_len, hidden_dim = query_states.size()
num_query_heads = module.num_query_heads
head_dim = hidden_dim // num_query_heads
query_states = (
query_states.view(bsz, seq_len, num_query_heads, head_dim)
.transpose(1, 2)
.contiguous()
)
query_context_matrices[layer_idx] = query_states[:, :, _current_chunk_offset:, :].clone()
hooks = []
for i, layer in enumerate(model.model.layers):
layer.self_attn.q_proj.layer_idx = i
layer.self_attn.q_proj.num_query_heads = layer.self_attn.config.num_attention_heads
hook = layer.self_attn.q_proj.register_forward_hook(query_hook_fn)
hooks.append(hook)
for j, tokenized_doc_chunk in enumerate(tokenized_doc_chunks):
current_seq_length = tokenized_doc_chunk["input_ids"].size(1)
_current_chunk_offset = current_seq_length
query_context_matrices.clear()
chunk_input_ids = tokenized_doc_chunk["input_ids"].contiguous()
chunk_attention_mask = tokenized_doc_chunk["attention_mask"].contiguous()
segment_attention_mask = torch.cat(
[past_attention_mask, chunk_attention_mask, ones_mask], dim=-1
).contiguous()
current_input_ids = torch.cat([chunk_input_ids, question_ids], dim=-1).contiguous()
current_attention_mask = torch.cat([segment_attention_mask, question_attention_mask], dim=-1).contiguous()
past_seen_tokens = cache.get_seq_length() if cache is not None else 0
cache_position = torch.arange(
past_seen_tokens + chunk_input_ids.shape[1],
past_seen_tokens + current_input_ids.shape[1],
device=device
)
causal_mask = model.model._prepare_4d_causal_attention_mask_with_cache_position(
current_attention_mask,
sequence_length=question_ids.size(1),
target_length=current_attention_mask.size(-1),
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=current_input_ids.size(0),
).contiguous()
with torch.no_grad():
outputs = model.model(
input_ids=current_input_ids,
use_cache=True,
past_key_values=cache,
)
cache = outputs.past_key_values
len_question = question_ids.size(1)
for layer_idx in range(len(model.model.layers)):
key_matrix = cache.key_cache[layer_idx]
query_matrix = query_context_matrices[layer_idx]
layer_cache_pos = torch.arange(
past_cache_len + current_seq_length,
past_cache_len + current_seq_length + len_question,
device=device
)
position_ids = layer_cache_pos.unsqueeze(0)
cos, sin = rotary_emb(query_matrix, position_ids)
cos = cos.unsqueeze(1)
sin = sin.unsqueeze(1)
query_matrix = (query_matrix * cos) + (rotate_half(query_matrix) * sin)
num_repeats = model.config.num_attention_heads // model.config.num_key_value_heads
key_matrix = repeat_kv(key_matrix, num_repeats)
scaling = math.sqrt(model.config.head_dim)
attention_matrix = torch.matmul(query_matrix, key_matrix.transpose(2, 3)) / scaling
causal_mask_sliced = causal_mask[:, :, :, : key_matrix.shape[-2]]
attention_matrix = attention_matrix + causal_mask_sliced
attention_matrix = torch.nn.functional.softmax(attention_matrix, dim=-1, dtype=torch.float32).to(query_matrix.dtype)
tol = 1e-8
binary_mask = (torch.abs(causal_mask_sliced.to(torch.float32)) < tol).to(torch.float32)
non_zero_counts = binary_mask.sum(dim=3, keepdim=True)
non_zero_counts = torch.clamp_min(non_zero_counts, 1.0).to(attention_matrix.dtype)
attention_matrix = attention_matrix / non_zero_counts
if j != num_chunks - 1:
attention_matrix = attention_matrix[:, :, :, : past_cache_len + current_seq_length].clone().contiguous()
else:
attention_matrix = attention_matrix[:, :, :, : past_cache_len + current_seq_length + len_question].clone().contiguous()
attention_matrix = torch.sum(attention_matrix, dim=-2)
attention_matrix = attention_matrix.view(
attention_matrix.size(0), model.config.num_key_value_heads, num_repeats, -1
).sum(dim=2)
full_context_size = attention_matrix.size(-1)
attention_matrix[..., :sink_tokens] = float("inf")
if j == num_chunks - 1:
attention_matrix[..., -len_question:] = float("inf")
if j == 0:
k = int(sink_tokens + (max(0, current_seq_length - sink_tokens) // compression_factor))
k = min(k + past_cache_len, full_context_size)
elif j < num_chunks - 1:
to_keep_new = int(current_seq_length // compression_factor)
k = min(past_cache_len + to_keep_new, full_context_size)
else:
desired_final = sink_tokens + target_token_size + len_question
k = desired_final if full_context_size >= desired_final else full_context_size
k = max(k, sink_tokens)
selected_indices = torch.topk(attention_matrix, k, dim=-1).indices
selected_indices, _ = torch.sort(selected_indices, dim=-1)
cache.compress_cache(layer_idx, selected_indices, inv_freq)
past_cache_len = cache._seen_tokens
past_attention_mask = torch.ones(1, past_cache_len, device=device)
for hook in hooks:
hook.remove()
return cache
except Exception as e:
raise RuntimeError(f"Failed to compress KV cache: {e}")
def run_naive_rag_query(collection_name, query, rag_token_size, prefix, task, few_shot_examples):
k = max(1, rag_token_size // 256)
vectorstore = Chroma(persist_directory="./chroma_db", embedding_function=embedding_model, collection_name=collection_name)
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": k})
retrieved_docs = retriever.invoke(query)
for doc in retrieved_docs:
print("=================")
print(doc.page_content)
print("=================")
formatted_context = "\n\n".join([doc.page_content for doc in retrieved_docs])
rag_context = prefix + "Retrieved context: \n" + formatted_context + task + few_shot_examples
return rag_context
@spaces.GPU
def prepare_compression_and_rag(combined_text, retrieval_slider_value, global_local_value, task_description, few_shot, state, progress=gr.Progress()):
progress(0, desc="Starting compression process")
# percentage = int(global_local_value.replace('%', ''))
percentage = 0 if global_local_value == "RAG" else 100
progress(0.1, desc="Tokenizing text and preparing task")
question_text = task_description + "\n" + few_shot
context_encoding = tokenizer(combined_text, return_tensors="pt").to(device)
question_encoding = tokenizer(question_text, return_tensors="pt").to(device)
context_ids = context_encoding["input_ids"]
context_attention_mask = context_encoding["attention_mask"]
question_ids = question_encoding["input_ids"]
question_attention_mask = question_encoding["attention_mask"]
retrieval_context_length = int(context_ids.size(1) / retrieval_slider_value)
rag_tokens = int(retrieval_context_length * (1.0 - (percentage / 100)))
kv_tokens = retrieval_context_length - rag_tokens
progress(0.2, desc=f"Token breakdown computed: {kv_tokens} KV tokens, {rag_tokens} RAG tokens")
if percentage > 0:
target_token_size = int(retrieval_context_length * (percentage / 100))
progress(0.3, desc="Starting KV cache compression")
step_size = 2
try:
past_key_values = copy.deepcopy(get_compressed_kv_cache(sink_tokens, step_size, target_token_size,
context_ids, context_attention_mask,
question_ids, question_attention_mask))
except Exception as e:
progress(1, desc="Compression failed")
print("Error during KV cache compression:", e)
state["error"] = "Error during KV cache compression. Please try lowering the compression ratio and try again."
return state, False
compressed_length = past_key_values.get_seq_length()
progress(0.6, desc="KV cache compression completed")
else:
target_token_size = 0
past_key_values = FinchCache()
compressed_length = past_key_values.get_seq_length()
progress(0.3, desc="Skipping compression as percentage is 0")
current_timestamp = int(time.time())
cache_name = f"cache_{current_timestamp}_{uuid.uuid4().hex[:6]}.pt"
save_dir = "./cache_dir"
os.makedirs(save_dir, exist_ok=True)
save_path = os.path.join(save_dir, cache_name)
past_key_values.save(save_path)
progress(0.8, desc="Cache saved successfully")
collection_name = state.get("rag_index", None)
if collection_name is None:
print("Collection name not found; creating a new one.")
if combined_text.startswith(prefix):
rag_text = combined_text[len(prefix):]
else:
rag_text = combined_text
current_timestamp = int(time.time())
collection_name = f"default_{current_timestamp}_{uuid.uuid4().hex[:6]}"
rag_index = create_rag_index(collection_name, rag_text)
state.update({
"compressed_cache": save_path,
"rag_index": collection_name,
"global_local": percentage,
"task_description": task_description,
"few_shot": few_shot,
"retrieval_slider": retrieval_context_length,
})
progress(1, desc="Compression complete")
return state, "Document compressed successfully. You can now chat.", True
@spaces.GPU
def chat_response_stream(message: str, history: list, state: dict, compression_done: bool):
# Check if the document is compressed before allowing chat
if not compression_done or "compressed_cache" not in state:
yield "Document not compressed yet. Please compress the document first to enable chat."
return
user_message = message
save_path = state["compressed_cache"]
past_key_values = FinchCache.load(save_path, device=model.device)
compressed_length = past_key_values.get_seq_length()
collection_name = state["rag_index"]
retrieval_slider_value = state["retrieval_slider"]
percentage = state["global_local"]
rag_retrieval_size = int(retrieval_slider_value * (1.0 - (percentage / 100)))
print("RAG retrieval size: ", rag_retrieval_size)
print("Compressed cache: ", compressed_length)
if percentage == 0:
rag_prefix = prefix
rag_task = state["task_description"]
rag_few_shot = state["few_shot"]
else:
rag_prefix = ""
rag_task = ""
rag_few_shot = ""
print("user message: ", user_message)
if rag_retrieval_size != 0:
print("Running RAG query")
rag_context = run_naive_rag_query(collection_name, user_message, rag_retrieval_size, rag_prefix, rag_task, rag_few_shot)
new_input = rag_context + "\nquestion: " + user_message + suffix + "answer:"
else:
new_input = "\nquestion: " + user_message + suffix + "answer:"
tokenized_new_input = tokenizer(new_input, return_tensors="pt").to(device)
eos_block = torch.full((1, compressed_length), tokenizer.eos_token_id, device=device, dtype=torch.long)
new_input_ids = torch.cat([eos_block, tokenized_new_input["input_ids"]], dim=-1)
new_attention_mask = torch.cat([torch.ones((1, compressed_length), device=device), tokenized_new_input["attention_mask"]], dim=-1)
print("New input is: ", new_input)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=new_input_ids,
attention_mask=new_attention_mask,
past_key_values=past_key_values,
streamer=streamer,
use_cache=True,
max_new_tokens=1024,
num_beams=1,
do_sample=False,
top_p=1.0,
top_k=None,
temperature=1.0,
# top_k=64,
# top_p=0.95,
# min_p=0.0
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
full_output = ""
for text in streamer:
full_output += text
time.sleep(0.05)
yield full_output
return full_output
def update_token_breakdown(token_count, retrieval_slider, global_local_value):
retrieval_context_length = int(token_count / retrieval_slider)
# percentage = int(global_local_value.replace('%', ''))
percentage = 0 if global_local_value == "RAG" else 100
rag_tokens = int(retrieval_context_length * (1.0 - (percentage / 100)))
kv_tokens = retrieval_context_length - rag_tokens
return f"Token Breakdown: {kv_tokens} tokens (KV compression), {rag_tokens} tokens (RAG retrieval)", f"Number of tokens after compression: {retrieval_context_length}"
##########################################################################
# Gradio Interface
##########################################################################
CSS = """
.main-container {
display: flex;
align-items: stretch;
}
.upload-section, .chatbot-container {
display: flex;
flex-direction: column;
height: 100%;
overflow-y: auto;
}
.upload-section {
padding: 10px;
border: 2px dashed #ccc;
border-radius: 10px;
}
.upload-button {
background: #34c759 !important;
color: white !important;
border-radius: 25px !important;
}
.chatbot-container {
margin-top: 0;
}
.status-output {
margin-top: 10px;
font-size: 14px;
}
.processing-info {
margin-top: 5px;
font-size: 12px;
color: #666;
}
.info-container {
margin-top: 10px;
padding: 10px;
border-radius: 5px;
}
.file-list {
margin-top: 0;
max-height: 200px;
overflow-y: auto;
padding: 5px;
border: 1px solid #eee;
border-radius: 5px;
}
.stats-box {
margin-top: 10px;
padding: 10px;
border-radius: 5px;
font-size: 12px;
}
.submit-btn {
background: #1a73e8 !important;
color: white !important;
border-radius: 25px !important;
margin-left: 10px;
padding: 5px 10px;
font-size: 16px;
}
.input-row {
display: flex;
align-items: center;
}
"""
def reset_chat_state():
return gr.update(value="Document not compressed yet. Please compress the document to enable chat."), False
with gr.Blocks(css=CSS, theme=gr.themes.Soft(font=["Arial", gr.themes.GoogleFont("Inconsolata"), "sans-serif"])) as demo:
# gr.HTML("<h1><center>Beyond RAG with LLama 3.1-8B-Instruct Model</center></h1>")
gr.HTML("<h1><center>Beyond RAG: Compress your document and chat with it.</center></h1>")
# Define chat_status_text as a Textbox with a set elem_id for custom styling.
chat_status_text = gr.Textbox(value="Document not compressed yet. Please compress the document to enable chat.", interactive=False, show_label=False, render=False, lines=5)
hidden_token_count = gr.State(value=0)
compression_done = gr.State(value=False)
compressed_doc_state = gr.State(value={})
with gr.Row(elem_classes="main-container"):
with gr.Column(elem_classes="upload-section"):
gr.Markdown("### Document Preprocessing")
with gr.Row():
file_input = gr.File(label="Drop file here or upload", file_count="multiple", elem_id="file-upload-area", height=120)
url_input = gr.Textbox(label="or enter a URL", placeholder="https://example.com/document.pdf", lines=2)
with gr.Row():
do_ocr = gr.Checkbox(label="Do OCR on Images", value=False, visible=False)
do_table = gr.Checkbox(label="Parse Tables", value=False, visible=False)
with gr.Accordion("Prompt Designer", open=False):
task_description_input = gr.Textbox(label="Task Description", value=default_task_description, lines=3, elem_id="task-description")
few_shot_input = gr.Textbox(label="Few-Shot Examples", value=default_few_shot, lines=10, elem_id="few-shot")
with gr.Accordion("Show Markdown Output", open=False):
markdown_output = gr.Textbox(label="Markdown Output", lines=20)
token_count_text = gr.Markdown("Number of tokens before compression: ")
retrieval_slider = gr.Slider(label="Select Compression Rate", minimum=1, maximum=32, step=1, value=2)
retrieval_info_text = gr.Markdown("Number of tokens after compression: ")
tokens_breakdown_text = gr.Markdown("Token breakdown will appear here.")
# global_local_slider = gr.Radio(label="Hybrid Retrieval (0 is all RAG, 100 is all global)",
# choices=["0%", "25%", "50%", "75%", "100%"], value="100%")
global_local_slider = gr.Radio(
label="Retrieval Mode",
choices=["RAG", "KVCompress"],
value="KVCompress"
)
compress_button = gr.Button("Compress Document", interactive=False, size="md", elem_classes="upload-button")
# File input: Run auto_convert then chain reset_chat_state.
file_input.change(
fn=auto_convert,
inputs=[file_input, url_input, do_ocr, do_table],
outputs=[markdown_output, token_count_text, retrieval_slider, retrieval_info_text,
hidden_token_count, compress_button, compression_done, compressed_doc_state, chat_status_text]
).then(
fn=reset_chat_state,
inputs=None,
outputs=[chat_status_text, compression_done]
)
# URL input: Run auto_convert then chain reset_chat_state.
url_input.change(
fn=auto_convert,
inputs=[file_input, url_input, do_ocr, do_table],
outputs=[markdown_output, token_count_text, retrieval_slider, retrieval_info_text,
hidden_token_count, compress_button, compression_done, compressed_doc_state, chat_status_text]
).then(
fn=reset_chat_state,
inputs=None,
outputs=[chat_status_text, compression_done]
)
# OCR checkbox: Run auto_convert then chain reset_chat_state.
do_ocr.change(
fn=auto_convert,
inputs=[file_input, url_input, do_ocr, do_table],
outputs=[markdown_output, token_count_text, retrieval_slider, retrieval_info_text,
hidden_token_count, compress_button, compression_done, compressed_doc_state, chat_status_text]
).then(
fn=reset_chat_state,
inputs=None,
outputs=[chat_status_text, compression_done]
)
# Table structure checkbox: Run auto_convert then chain reset_chat_state.
do_table.change(
fn=auto_convert,
inputs=[file_input, url_input, do_ocr, do_table],
outputs=[markdown_output, token_count_text, retrieval_slider, retrieval_info_text,
hidden_token_count, compress_button, compression_done, compressed_doc_state, chat_status_text]
).then(
fn=reset_chat_state,
inputs=None,
outputs=[chat_status_text, compression_done]
)
# Reset chat state when prompt designer fields change.
task_description_input.change(
fn=reset_chat_state,
inputs=None,
outputs=[chat_status_text, compression_done]
)
few_shot_input.change(
fn=reset_chat_state,
inputs=None,
outputs=[chat_status_text, compression_done]
)
# Reset chat state when the Markdown output changes.
markdown_output.change(
fn=reset_chat_state,
inputs=None,
outputs=[chat_status_text, compression_done]
)
# When sliders change, reset chat state.
retrieval_slider.change(
fn=reset_chat_state,
inputs=None,
outputs=[chat_status_text, compression_done]
)
global_local_slider.change(
fn=reset_chat_state,
inputs=None,
outputs=[chat_status_text, compression_done]
)
# Update token breakdown when sliders change.
retrieval_slider.change(
fn=update_token_breakdown,
inputs=[hidden_token_count, retrieval_slider, global_local_slider],
outputs=[tokens_breakdown_text, retrieval_info_text]
)
global_local_slider.change(
fn=update_token_breakdown,
inputs=[hidden_token_count, retrieval_slider, global_local_slider],
outputs=[tokens_breakdown_text, retrieval_info_text]
)
# Compress button: Prepare compression and then update chat status.
compress_button.click(
fn=prepare_compression_and_rag,
inputs=[markdown_output, retrieval_slider, global_local_slider, task_description_input, few_shot_input, compressed_doc_state],
outputs=[compressed_doc_state, chat_status_text, compression_done]
)
with gr.Column(elem_classes="chatbot-container"):
chat_status_text.render()
gr.Markdown("## Chat (LLama 3.1-8B-Instruct)")
gr.Markdown("**Note:** There is currently no chat history available.")
chat_interface = gr.ChatInterface(
fn=chat_response_stream,
additional_inputs=[compressed_doc_state, compression_done],
type="messages",
fill_height=True
)
demo.queue(max_size=16).launch()