giulio98 commited on
Commit
b5ac9e4
·
0 Parent(s):

Update app.py

Browse files
.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ .env
README.md ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Beyondrag
3
+ emoji: 💬
4
+ colorFrom: yellow
5
+ colorTo: purple
6
+ sdk: gradio
7
+ sdk_version: 5.20.1
8
+ app_file: app.py
9
+ pinned: false
10
+ ---
11
+
12
+ An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
__pycache__/cache.cpython-310.pyc ADDED
Binary file (3.86 kB). View file
 
__pycache__/global_compression.cpython-310.pyc ADDED
Binary file (4.76 kB). View file
 
__pycache__/preprocess_document.cpython-310.pyc ADDED
Binary file (1.08 kB). View file
 
__pycache__/rag.cpython-310.pyc ADDED
Binary file (2.29 kB). View file
 
__pycache__/utils.cpython-310.pyc ADDED
Binary file (3.04 kB). View file
 
app.py ADDED
@@ -0,0 +1,717 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import os
4
+ import time
5
+ from threading import Thread
6
+
7
+ import gradio as gr
8
+ import spaces
9
+ import torch
10
+ from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
11
+ from docling.datamodel.pipeline_options import PdfPipelineOptions
12
+ from docling.document_converter import DocumentConverter, InputFormat, PdfFormatOption
13
+ from langchain.schema.document import Document
14
+ from langchain_chroma import Chroma
15
+ from langchain_community.embeddings import HuggingFaceBgeEmbeddings
16
+ from langchain_docling import DoclingLoader
17
+ from langchain_docling.loader import ExportType
18
+ from langchain_text_splitters import RecursiveCharacterTextSplitter
19
+ from transformers import AutoModelForCausalLM, AutoTokenizer, DynamicCache, TextIteratorStreamer
20
+ from transformers.models.llama.modeling_llama import rotate_half
21
+
22
+ from utils import (
23
+ calculate_tokens_suggest_compression_ratio,
24
+ repeat_kv,
25
+ update_retrieval_context,
26
+ )
27
+
28
+
29
+
30
+ # Initialize the model and tokenizer.
31
+ api_token = os.getenv("HF_TOKEN")
32
+ model_name = "meta-llama/Llama-3.1-8B-Instruct"
33
+ tokenizer = AutoTokenizer.from_pretrained(model_name, token=api_token)
34
+ model = AutoModelForCausalLM.from_pretrained(model_name, token=api_token, torch_dtype=torch.float16)
35
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
36
+ model = model.eval()
37
+ model.to(device)
38
+ embedding_model = HuggingFaceBgeEmbeddings(
39
+ model_name="BAAI/bge-large-en-v1.5",
40
+ model_kwargs={"device": str(device)},
41
+ encode_kwargs={"normalize_embeddings": True},
42
+ query_instruction=""
43
+ )
44
+
45
+
46
+ # Create a chat template and split into prefix and suffix.
47
+ content_system = ""
48
+ content_user = "######"
49
+ user_template = [
50
+ {"role": "system", "content": content_system},
51
+ {"role": "user", "content": content_user}
52
+ ]
53
+ user = tokenizer.apply_chat_template(user_template, add_generation_prompt=True, tokenize=False)
54
+ prefix, suffix = user.split(content_user)
55
+ sink_tokens = max(4, len(tokenizer.encode(prefix)))
56
+
57
+ # Default prompt content.
58
+ default_task_description = (
59
+ "Answer the question based on the given passages. "
60
+ "Only give me the answer and do not output any other words."
61
+ )
62
+ default_few_shot = """Examples
63
+ question: Which case was brought to court first Miller v. California or Gates v. Collier ?
64
+ answer: Miller v. California
65
+ question: The actor that plays Phileas Fogg in "Around the World in 80 Days", co-starred with Gary Cooper in a 1939 Goldwyn Productions film based on a novel by what author?
66
+ answer: Charles L. Clifford
67
+ question: Prior to playing for Michigan State, Keith Nichol played football for a school located in what city?
68
+ answer: Norman
69
+ """
70
+
71
+ class FinchCache(DynamicCache):
72
+ def __init__(self) -> None:
73
+ super().__init__()
74
+ self.key_cache = []
75
+ self.value_cache = []
76
+
77
+ @staticmethod
78
+ def _rotate_half(x):
79
+ x1 = x[..., : x.shape[-1] // 2]
80
+ x2 = x[..., x.shape[-1] // 2 :]
81
+ return torch.cat((-x2, x1), dim=-1)
82
+
83
+ def _apply_key_rotary_pos_emb(self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
84
+ return (key_states * cos) + (self._rotate_half(key_states) * sin)
85
+
86
+ @staticmethod
87
+ def _rerotate_cos_sin(x, inv_freq, important_pos_batch):
88
+ B, H, L = important_pos_batch.shape
89
+ device = important_pos_batch.device
90
+ device_type = x.device.type
91
+ dtype = x.dtype
92
+ idx = torch.arange(0, L, device=device)
93
+ idx = idx.unsqueeze(0)
94
+ inv_freq = inv_freq[None, None, :, None].float().expand(B, H, -1, 1) # (B, H, M, 1)
95
+ idx = idx[:, None, :].float().expand(B, H, L) # (B, H, L)
96
+ delta_pos = idx - important_pos_batch
97
+ delta_pos = delta_pos.unsqueeze(2) # (B, H, 1, L)
98
+
99
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
100
+
101
+ with torch.autocast(device_type=device_type, enabled=False):
102
+ freqs = delta_pos.float() * inv_freq.float()
103
+ freqs = freqs.transpose(2, 3)
104
+ emb = torch.cat((freqs, freqs), dim=-1)
105
+ cos = emb.cos().contiguous()
106
+ sin = emb.sin().contiguous()
107
+ return cos.to(dtype=dtype), sin.to(dtype=dtype)
108
+
109
+ @staticmethod
110
+ def gather_important_tokens(states, indices):
111
+ return torch.gather(states, 2, indices.unsqueeze(-1).expand(-1, -1, -1, states.size(3))).contiguous()
112
+
113
+ def compress_cache(self, layer_index, important_pos, inv_freq):
114
+ new_length = important_pos.size(2)
115
+ new_cos, new_sin = self._rerotate_cos_sin(self.key_cache[layer_index], inv_freq, important_pos)
116
+ gathered_keys = self.gather_important_tokens(self.key_cache[layer_index], important_pos).clone()
117
+ self.key_cache[layer_index] = self._apply_key_rotary_pos_emb(gathered_keys, new_cos, new_sin)
118
+ gathered_values = self.gather_important_tokens(self.value_cache[layer_index], important_pos).clone()
119
+ self.value_cache[layer_index] = gathered_values
120
+ self._seen_tokens = new_length
121
+
122
+ def save(self, path: str):
123
+ """Save the cache to disk, moving tensors to CPU."""
124
+ try:
125
+ os.makedirs(os.path.dirname(path), exist_ok=True)
126
+ torch.save(
127
+ {"key_cache": [k.cpu() for k in self.key_cache], "value_cache": [v.cpu() for v in self.value_cache]},
128
+ path,
129
+ )
130
+ except Exception as e:
131
+ print(f"Error occurred while saving: {e}")
132
+
133
+ @classmethod
134
+ def load(cls, path: str, device: str = "cpu") -> "FinchCache":
135
+ """Load the cache from disk and move tensors to the specified device."""
136
+ data = torch.load(path, map_location=device)
137
+ cache = cls()
138
+ cache.key_cache = [k.to(device) for k in data["key_cache"]]
139
+ cache.value_cache = [v.to(device) for v in data["value_cache"]]
140
+ cache._seen_tokens = cache.value_cache[0].size(2) if cache.value_cache else 0
141
+ return cache
142
+
143
+
144
+
145
+ def convert_to_markdown(file_objs, url, do_ocr, do_table_structure):
146
+ file_path = file_objs if file_objs is not None else url
147
+ pipeline_options = PdfPipelineOptions()
148
+ pipeline_options.do_ocr = do_ocr
149
+ pipeline_options.do_table_structure = do_table_structure
150
+ pdf_format_options = PdfFormatOption(
151
+ pipeline_options=pipeline_options,
152
+ backend=PyPdfiumDocumentBackend,
153
+ )
154
+ doc_converter = DocumentConverter(
155
+ allowed_formats=[InputFormat.PDF],
156
+ format_options={
157
+ InputFormat.PDF: pdf_format_options
158
+ }
159
+ )
160
+
161
+ # Pass the custom converter to the DoclingLoader.
162
+ loader = DoclingLoader(
163
+ file_path=file_path,
164
+ export_type=ExportType.MARKDOWN,
165
+ converter=doc_converter
166
+ )
167
+ docs = loader.load()
168
+ return docs[0].page_content
169
+
170
+ def create_rag_index(text_no_prefix):
171
+ """Loads the PDF, splits its text, and builds a vectorstore for naive RAG."""
172
+ text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(
173
+ tokenizer,
174
+ chunk_size=256,
175
+ chunk_overlap=0,
176
+ add_start_index=True,
177
+ strip_whitespace=True,
178
+ separators=["\n\n", "\n", ".", " ", ""],
179
+ )
180
+ # Concatenate pages and create Document objects.
181
+ docs = [Document(page_content=x) for x in text_splitter.split_text(text_no_prefix)]
182
+ vectorstore = Chroma.from_documents(documents=docs, embedding=embedding_model)
183
+ return vectorstore
184
+
185
+
186
+ @spaces.GPU
187
+ def auto_convert(file_objs, url, do_ocr, do_table_structure):
188
+ if file_objs is None and (url is None or url.strip() == ""):
189
+ return (
190
+ gr.update(value=""),
191
+ "Number of tokens before compression: ",
192
+ gr.update(),
193
+ "Number of tokens after compression: ",
194
+ 0,
195
+ gr.update(interactive=False), # Disable compress button when no input.
196
+ False,
197
+ {} # return an empty state dictionary
198
+ )
199
+ # Convert the document to markdown.
200
+ markdown = convert_to_markdown(file_objs, url, do_ocr, do_table_structure)
201
+ combined_text = prefix + markdown
202
+ token_count, suggestions, _ = calculate_tokens_suggest_compression_ratio(combined_text, tokenizer, model)
203
+ min_ratio = min(suggestions)
204
+ max_ratio = max(suggestions)
205
+ default_ratio = suggestions[len(suggestions) // 2]
206
+ retrieval_tokens = int(token_count / default_ratio)
207
+ token_count_str = f"Number of tokens before compression: {token_count}"
208
+ retrieval_str = f"Number of tokens after compression: {retrieval_tokens}"
209
+ slider_update = gr.update(value=default_ratio, minimum=min_ratio, maximum=max_ratio, step=1)
210
+
211
+ # Create the RAG index immediately.
212
+ if combined_text.startswith(prefix):
213
+ rag_text = combined_text[len(prefix):]
214
+ else:
215
+ rag_text = combined_text
216
+ rag_index = create_rag_index(rag_text)
217
+ state = {"rag_index": rag_index}
218
+
219
+ return (
220
+ combined_text,
221
+ token_count_str,
222
+ slider_update,
223
+ retrieval_str,
224
+ token_count,
225
+ gr.update(interactive=True),
226
+ False,
227
+ state
228
+ )
229
+
230
+
231
+ def get_compressed_kv_cache(sink_tokens, step_size, target_token_size, context_ids, context_attention_mask, question_ids, question_attention_mask):
232
+ device = model.device
233
+ dtype = model.dtype
234
+ sink_tokens = sink_tokens
235
+ num_chunks = step_size
236
+ context_ids = context_ids.to(device)
237
+ context_attention_mask = context_attention_mask.to(device)
238
+ question_ids = question_ids.to(device)
239
+ question_attention_mask = question_attention_mask.to(device)
240
+ question_len = question_ids.size(1)
241
+ total_len = context_ids.size(1)
242
+ max_context_tokens_allowed = model.config.max_position_embeddings - question_len
243
+ if total_len > max_context_tokens_allowed:
244
+ num_chunks = max(step_size, math.ceil(total_len / max_context_tokens_allowed))
245
+
246
+ if total_len <= sink_tokens or num_chunks == 1:
247
+ # If the context is too short or only one chunk is desired, use the entire context.
248
+ context_ids_list = [context_ids]
249
+ context_attention_mask_list = [context_attention_mask]
250
+ else:
251
+ # Calculate how many tokens remain after the sink tokens.
252
+ remainder_len = total_len - sink_tokens
253
+
254
+ # Compute the base tokens per chunk and any leftover.
255
+ base = remainder_len // num_chunks
256
+ leftover = remainder_len % num_chunks
257
+
258
+ # Build a list of chunk sizes.
259
+ # First chunk gets the sink tokens plus base tokens.
260
+ chunk_sizes = [sink_tokens + base]
261
+
262
+ # Chunks 2 to num_chunks-1 get base tokens each.
263
+ for _ in range(num_chunks - 2):
264
+ chunk_sizes.append(base)
265
+
266
+ # The last chunk gets the remaining tokens (base + leftover).
267
+ if num_chunks > 1:
268
+ chunk_sizes.append(base + leftover)
269
+
270
+ # Now slice the context using the calculated sizes.
271
+ context_ids_list = []
272
+ context_attention_mask_list = []
273
+ offset = 0
274
+ for size in chunk_sizes:
275
+ end = offset + size
276
+ context_ids_list.append(context_ids[:, offset:end])
277
+ context_attention_mask_list.append(context_attention_mask[:, offset:end])
278
+ offset = end
279
+
280
+ # (Optional) Continue with the rest of your processing…
281
+ len_rest = max(total_len - sink_tokens, 1)
282
+ compression_factor = len_rest // target_token_size
283
+ if compression_factor < 1:
284
+ compression_factor = 1
285
+
286
+ tokenized_doc_chunks = []
287
+ for ids_chunk, mask_chunk in zip(context_ids_list, context_attention_mask_list):
288
+ tokenized_doc_chunks.append({"input_ids": ids_chunk, "attention_mask": mask_chunk})
289
+
290
+ print("Number of chunks: ", len(tokenized_doc_chunks))
291
+
292
+ rotary_emb = model.model.rotary_emb.to(device)
293
+ inv_freq = rotary_emb.inv_freq
294
+ batch_size = question_ids.size(0)
295
+ ones_mask = torch.ones(batch_size, 1, dtype=question_attention_mask.dtype, device=device)
296
+
297
+ cache = FinchCache()
298
+ past_cache_len = 0
299
+ past_attention_mask = torch.zeros(batch_size, 0, dtype=question_attention_mask.dtype, device=device)
300
+ num_chunks = len(tokenized_doc_chunks)
301
+
302
+ # Prepare a shared dictionary for hook outputs.
303
+ query_context_matrices = {}
304
+
305
+ # Define a hook function that uses a per-chunk offset stored on self.
306
+ def query_hook_fn(module, input, output):
307
+ layer_idx = getattr(module, "layer_idx", None)
308
+ if layer_idx is not None:
309
+ query_states = output.detach()
310
+ bsz, seq_len, hidden_dim = query_states.size()
311
+ num_query_heads = module.num_query_heads
312
+ head_dim = hidden_dim // num_query_heads
313
+ query_states = (
314
+ query_states.view(bsz, seq_len, num_query_heads, head_dim)
315
+ .transpose(1, 2)
316
+ .contiguous()
317
+ )
318
+ # Use self._current_chunk_offset to select only the new tokens.
319
+ query_context_matrices[layer_idx] = query_states[:, :, _current_chunk_offset:, :].clone()
320
+
321
+ # Pre-register hooks for all layers only once.
322
+ hooks = []
323
+ for i, layer in enumerate(model.model.layers):
324
+ layer.self_attn.q_proj.layer_idx = i # For tracking.
325
+ layer.self_attn.q_proj.num_query_heads = layer.self_attn.config.num_attention_heads
326
+ hook = layer.self_attn.q_proj.register_forward_hook(query_hook_fn)
327
+ hooks.append(hook)
328
+
329
+ # Process each document chunk sequentially.
330
+ for j, tokenized_doc_chunk in enumerate(tokenized_doc_chunks):
331
+ current_seq_length = tokenized_doc_chunk["input_ids"].size(1)
332
+ # Save the offset in an attribute the hook can access.
333
+ _current_chunk_offset = current_seq_length
334
+ # Clear the dictionary from any previous chunk.
335
+ query_context_matrices.clear()
336
+
337
+ # These chunks are already on the device.
338
+ chunk_input_ids = tokenized_doc_chunk["input_ids"].contiguous()
339
+ chunk_attention_mask = tokenized_doc_chunk["attention_mask"].contiguous()
340
+ segment_attention_mask = torch.cat(
341
+ [past_attention_mask, chunk_attention_mask, ones_mask], dim=-1
342
+ ).contiguous()
343
+ current_input_ids = torch.cat([chunk_input_ids, question_ids], dim=-1).contiguous()
344
+ current_attention_mask = torch.cat([segment_attention_mask, question_attention_mask], dim=-1).contiguous()
345
+
346
+ past_seen_tokens = cache.get_seq_length() if cache is not None else 0
347
+ cache_position = torch.arange(
348
+ past_seen_tokens + chunk_input_ids.shape[1],
349
+ past_seen_tokens + current_input_ids.shape[1],
350
+ device=device
351
+ )
352
+ causal_mask = model.model._prepare_4d_causal_attention_mask_with_cache_position(
353
+ current_attention_mask,
354
+ sequence_length=question_ids.size(1),
355
+ target_length=current_attention_mask.size(-1),
356
+ dtype=dtype,
357
+ device=device,
358
+ cache_position=cache_position,
359
+ batch_size=current_input_ids.size(0),
360
+ ).contiguous()
361
+
362
+ with torch.no_grad():
363
+ outputs = model.model(
364
+ input_ids=current_input_ids,
365
+ use_cache=True,
366
+ past_key_values=cache,
367
+ )
368
+ cache = outputs.past_key_values
369
+
370
+ len_question = question_ids.size(1)
371
+ # Now, for each transformer layer, update the cache using the query/key attention.
372
+ for layer_idx in range(len(model.model.layers)):
373
+ key_matrix = cache.key_cache[layer_idx]
374
+ query_matrix = query_context_matrices[layer_idx]
375
+ layer_cache_pos = torch.arange(
376
+ past_cache_len + current_seq_length,
377
+ past_cache_len + current_seq_length + len_question,
378
+ device=device
379
+ )
380
+ position_ids = layer_cache_pos.unsqueeze(0)
381
+ cos, sin = rotary_emb(query_matrix, position_ids)
382
+ cos = cos.unsqueeze(1)
383
+ sin = sin.unsqueeze(1)
384
+ query_matrix = (query_matrix * cos) + (rotate_half(query_matrix) * sin)
385
+ num_repeats = model.config.num_attention_heads // model.config.num_key_value_heads
386
+ key_matrix = repeat_kv(key_matrix, num_repeats)
387
+
388
+ scaling = math.sqrt(model.config.head_dim)
389
+ attention_matrix = torch.matmul(query_matrix, key_matrix.transpose(2, 3)) / scaling
390
+ causal_mask_sliced = causal_mask[:, :, :, : key_matrix.shape[-2]]
391
+ attention_matrix = attention_matrix + causal_mask_sliced
392
+ attention_matrix = torch.nn.functional.softmax(attention_matrix, dim=-1, dtype=torch.float32).to(query_matrix.dtype)
393
+ # Normalization
394
+ tol = 1e-8
395
+ binary_mask = (torch.abs(causal_mask_sliced.to(torch.float32)) < tol).to(torch.float32)
396
+ non_zero_counts = binary_mask.sum(dim=3, keepdim=True)
397
+ non_zero_counts = torch.clamp_min(non_zero_counts, 1.0).to(attention_matrix.dtype)
398
+ attention_matrix = attention_matrix / non_zero_counts
399
+ if j != num_chunks - 1:
400
+ attention_matrix = attention_matrix[:, :, :, : past_cache_len + current_seq_length].clone().contiguous()
401
+ else:
402
+ attention_matrix = attention_matrix[:, :, :, : past_cache_len + current_seq_length + len_question].clone().contiguous()
403
+ attention_matrix = torch.sum(attention_matrix, dim=-2)
404
+ attention_matrix = attention_matrix.view(
405
+ attention_matrix.size(0), model.config.num_key_value_heads, num_repeats, -1
406
+ ).sum(dim=2)
407
+ full_context_size = attention_matrix.size(-1)
408
+ attention_matrix[..., :sink_tokens] = float("inf")
409
+ if j == num_chunks - 1:
410
+ attention_matrix[..., -len_question:] = float("inf")
411
+ if j == 0:
412
+ k = int(sink_tokens + (max(0, current_seq_length - sink_tokens) // compression_factor))
413
+ k = min(k + past_cache_len, full_context_size)
414
+ elif j < num_chunks - 1:
415
+ to_keep_new = int(current_seq_length // compression_factor)
416
+ k = min(past_cache_len + to_keep_new, full_context_size)
417
+ else:
418
+ desired_final = sink_tokens + target_token_size + len_question# TODO remember to include the question tokens
419
+ k = desired_final if full_context_size >= desired_final else full_context_size
420
+ k = max(k, sink_tokens)
421
+ selected_indices = torch.topk(attention_matrix, k, dim=-1).indices
422
+ selected_indices, _ = torch.sort(selected_indices, dim=-1)
423
+ cache.compress_cache(layer_idx, selected_indices, inv_freq)
424
+
425
+ past_cache_len = cache._seen_tokens
426
+ past_attention_mask = torch.ones(1, past_cache_len, device=device)
427
+
428
+ # Remove the hooks once after all chunks are processed.
429
+ for hook in hooks:
430
+ hook.remove()
431
+
432
+ return cache
433
+
434
+
435
+ def run_naive_rag_query(vectorstore, query, rag_token_size, prefix, task, few_shot_examples):
436
+ """
437
+ For naive RAG, retrieves top-k chunks (k based on target token size)
438
+ and generates an answer using those chunks.
439
+ """
440
+ k = max(1, rag_token_size // 256)
441
+ retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": k})
442
+ retrieved_docs = retriever.invoke(query)
443
+ for doc in retrieved_docs:
444
+ print("=================")
445
+ print(doc.page_content)
446
+ print("=================")
447
+ formatted_context = "\n\n".join([doc.page_content for doc in retrieved_docs])
448
+
449
+ rag_context = prefix + "Retrieved context: \n" + formatted_context + task + few_shot_examples
450
+
451
+ return rag_context
452
+
453
+
454
+ @spaces.GPU
455
+ def prepare_compression_and_rag(combined_text, retrieval_slider_value, global_local_value, task_description, few_shot, state):
456
+ """
457
+ Prepares the compressed KV cache. Uses the precomputed rag_index from state.
458
+ """
459
+ percentage = int(global_local_value.replace('%', ''))
460
+ question_text = task_description + "\n" + few_shot
461
+ context_encoding = tokenizer(combined_text, return_tensors="pt").to(device)
462
+ question_encoding = tokenizer(question_text, return_tensors="pt").to(device)
463
+ context_ids = context_encoding["input_ids"]
464
+ context_attention_mask = context_encoding["attention_mask"]
465
+ question_ids = question_encoding["input_ids"]
466
+ question_attention_mask = question_encoding["attention_mask"]
467
+ retrieval_context_length = int(context_ids.size(1) / retrieval_slider_value)
468
+
469
+ if percentage > 0:
470
+ target_token_size = int(retrieval_context_length * (percentage / 100))
471
+ print("Target token size for compression: ", target_token_size)
472
+ step_size = 2
473
+ start_time_prefill = time.perf_counter()
474
+ past_key_values = copy.deepcopy(get_compressed_kv_cache(sink_tokens, step_size, target_token_size,
475
+ context_ids, context_attention_mask,
476
+ question_ids, question_attention_mask))
477
+ compressed_length = past_key_values.get_seq_length()
478
+ print("Context size after compression: ", compressed_length)
479
+ print("Compression rate: ", context_ids.size(1) / compressed_length)
480
+ else:
481
+ start_time_prefill = 0
482
+ target_token_size = 0
483
+ past_key_values = FinchCache()
484
+ compressed_length = past_key_values.get_seq_length()
485
+
486
+
487
+ # Use the precomputed rag_index from state.
488
+ rag_index = state.get("rag_index", None)
489
+ if rag_index is None:
490
+ if combined_text.startswith(prefix):
491
+ rag_text = combined_text[len(prefix):]
492
+ else:
493
+ rag_text = combined_text
494
+ rag_index = create_rag_index(rag_text, device)
495
+
496
+ state.update({
497
+ "compressed_cache": past_key_values,
498
+ "compressed_length": compressed_length,
499
+ "rag_index": rag_index,
500
+ "target_token_size": target_token_size,
501
+ "global_local": percentage,
502
+ "combined_text": combined_text,
503
+ "task_description": task_description,
504
+ "few_shot": few_shot,
505
+ "retrieval_slider": retrieval_context_length,
506
+ "prefill_time": time.perf_counter() - start_time_prefill
507
+ })
508
+ return state, True
509
+
510
+
511
+ @spaces.GPU
512
+ def chat_response_stream(message: str, history: list, state: dict):
513
+ """
514
+ Generates a chat response with streaming output.
515
+ Returns a simple string (not a list of message dicts) for ChatInterface.
516
+ """
517
+ user_message = message
518
+ past_key_values = state["compressed_cache"]
519
+ compressed_length = past_key_values.get_seq_length()
520
+ rag_index = state["rag_index"]
521
+ retrieval_slider_value = state["retrieval_slider"]
522
+ percentage = state["global_local"]
523
+
524
+ rag_retrieval_size = int(retrieval_slider_value * (1.0 - (percentage / 100)))
525
+ print("RAG retrieval size: ", rag_retrieval_size)
526
+
527
+ if percentage == 0:
528
+ rag_prefix = prefix
529
+ rag_task = state["task_description"]
530
+ rag_few_shot = state["few_shot"]
531
+ else:
532
+ rag_prefix = ""
533
+ rag_task = ""
534
+ rag_few_shot = ""
535
+ print("user message: ", user_message)
536
+ if rag_retrieval_size != 0:
537
+ rag_context = run_naive_rag_query(rag_index, user_message, rag_retrieval_size, rag_prefix, rag_task, rag_few_shot)
538
+ new_input = rag_context + "\nquestion: " + user_message + suffix + "answer:"
539
+ else:
540
+ new_input = "\nquestion: " + user_message + suffix + "answer:"
541
+ tokenized_new_input = tokenizer(new_input, return_tensors="pt").to(device)
542
+ eos_block = torch.full((1, compressed_length), tokenizer.eos_token_id, device=device, dtype=torch.long)
543
+ new_input_ids = torch.cat([eos_block, tokenized_new_input["input_ids"]], dim=-1)
544
+ new_attention_mask = torch.cat([torch.ones((1, compressed_length), device=device), tokenized_new_input["attention_mask"]], dim=-1)
545
+
546
+ print("New input is: ", new_input)
547
+ streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
548
+ generate_kwargs = dict(
549
+ input_ids=new_input_ids,
550
+ attention_mask=new_attention_mask,
551
+ past_key_values=past_key_values,
552
+ streamer=streamer,
553
+ use_cache=True,
554
+ max_new_tokens=1024,
555
+ num_beams=1,
556
+ do_sample=False,
557
+ temperature=1.0,
558
+ top_p=1.0,
559
+ top_k=None,
560
+ )
561
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
562
+ t.start()
563
+
564
+ full_output = ""
565
+ for text in streamer:
566
+ full_output += text
567
+ time.sleep(0.05)
568
+ yield full_output
569
+
570
+ state["compressed_cache"] = past_key_values
571
+ return full_output
572
+
573
+ ##########################################################################
574
+ # Gradio Interface: note that we now use ChatInterface instead of a Chatbot.
575
+ ##########################################################################
576
+ CSS = """
577
+ body {
578
+ font-family: "Times New Roman", Times, serif;
579
+ }
580
+ .upload-section {
581
+ padding: 10px;
582
+ border: 2px dashed #ccc;
583
+ border-radius: 10px;
584
+ }
585
+ .upload-button {
586
+ background: #34c759 !important;
587
+ color: white !important;
588
+ border-radius: 25px !important;
589
+ }
590
+ .chatbot-container {
591
+ margin-top: 20px;
592
+ }
593
+ .status-output {
594
+ margin-top: 10px;
595
+ font-size: 14px;
596
+ }
597
+ .processing-info {
598
+ margin-top: 5px;
599
+ font-size: 12px;
600
+ color: #666;
601
+ }
602
+ .info-container {
603
+ margin-top: 10px;
604
+ padding: 10px;
605
+ border-radius: 5px;
606
+ }
607
+ .file-list {
608
+ margin-top: 0;
609
+ max-height: 200px;
610
+ overflow-y: auto;
611
+ padding: 5px;
612
+ border: 1px solid #eee;
613
+ border-radius: 5px;
614
+ }
615
+ .stats-box {
616
+ margin-top: 10px;
617
+ padding: 10px;
618
+ border-radius: 5px;
619
+ font-size: 12px;
620
+ }
621
+ .submit-btn {
622
+ background: #1a73e8 !important;
623
+ color: white !important;
624
+ border-radius: 25px !important;
625
+ margin-left: 10px;
626
+ padding: 5px 10px;
627
+ font-size: 16px;
628
+ }
629
+ .input-row {
630
+ display: flex;
631
+ align-items: center;
632
+ }
633
+ @media (min-width: 768px) {
634
+ .main-container {
635
+ display: flex;
636
+ justify-content: space-between;
637
+ gap: 20px;
638
+ }
639
+ .upload-section {
640
+ flex: 3;
641
+ }
642
+ .chatbot-container {
643
+ flex: 1;
644
+ margin-top: 0;
645
+ }
646
+ }
647
+ """
648
+
649
+ with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
650
+ gr.HTML("<h1><center>Beyond RAG with LLama 3.1-8B-Instruct Model</center></h1>")
651
+ gr.HTML("<center><p>Compress your document and chat with it.</p></center>")
652
+
653
+ hidden_token_count = gr.State(value=0)
654
+ compression_done = gr.State(value=False)
655
+ compressed_doc_state = gr.State(value={})
656
+
657
+ with gr.Row(elem_classes="main-container"):
658
+ with gr.Column(elem_classes="upload-section"):
659
+ gr.Markdown("## Document Preprocessing")
660
+ with gr.Row():
661
+ file_input = gr.File(label="Drop file here or upload", file_count="multiple", elem_id="file-upload-area")
662
+ url_input = gr.Textbox(label="or enter a URL", placeholder="https://example.com/document.pdf")
663
+ with gr.Row():
664
+ do_ocr = gr.Checkbox(label="Do OCR", value=False)
665
+ do_table = gr.Checkbox(label="Include Table Structure", value=False)
666
+ with gr.Accordion("Prompt Designer", open=False):
667
+ task_description_input = gr.Textbox(label="Task Description", value=default_task_description, lines=3, elem_id="task-description")
668
+ few_shot_input = gr.Textbox(label="Few-Shot Examples", value=default_few_shot, lines=10, elem_id="few-shot")
669
+ with gr.Accordion("Show Markdown Output", open=False):
670
+ markdown_output = gr.Textbox(label="Markdown Output", lines=20)
671
+ token_count_text = gr.Markdown("Number of tokens before compression: ")
672
+ retrieval_slider = gr.Slider(label="Select Compression Rate", minimum=1, maximum=32, step=1, value=2)
673
+ retrieval_info_text = gr.Markdown("Number of tokens after compression: ")
674
+ global_local_slider = gr.Radio(label="Global vs Local (0 is all RAG, 100 is all global)",
675
+ choices=["0%", "25%", "50%", "75%", "100%"], value="75%")
676
+ compress_button = gr.Button("Compress Document", interactive=False, elem_classes="upload-button")
677
+
678
+ file_input.change(
679
+ fn=auto_convert,
680
+ inputs=[file_input, url_input, do_ocr, do_table],
681
+ outputs=[markdown_output, token_count_text, retrieval_slider, retrieval_info_text, hidden_token_count, compress_button, compression_done, compressed_doc_state]
682
+ )
683
+ url_input.change(
684
+ fn=auto_convert,
685
+ inputs=[file_input, url_input, do_ocr, do_table],
686
+ outputs=[markdown_output, token_count_text, retrieval_slider, retrieval_info_text, hidden_token_count, compress_button, compression_done, compressed_doc_state]
687
+ )
688
+ do_ocr.change(
689
+ fn=auto_convert,
690
+ inputs=[file_input, url_input, do_ocr, do_table],
691
+ outputs=[markdown_output, token_count_text, retrieval_slider, retrieval_info_text, hidden_token_count, compress_button, compression_done, compressed_doc_state]
692
+ )
693
+ do_table.change(
694
+ fn=auto_convert,
695
+ inputs=[file_input, url_input, do_ocr, do_table],
696
+ outputs=[markdown_output, token_count_text, retrieval_slider, retrieval_info_text, hidden_token_count, compress_button, compression_done, compressed_doc_state]
697
+ )
698
+ retrieval_slider.change(
699
+ fn=update_retrieval_context,
700
+ inputs=[hidden_token_count, retrieval_slider],
701
+ outputs=retrieval_info_text
702
+ )
703
+ compress_button.click(
704
+ fn=prepare_compression_and_rag,
705
+ inputs=[markdown_output, retrieval_slider, global_local_slider, task_description_input, few_shot_input, compressed_doc_state],
706
+ outputs=[compressed_doc_state, compression_done]
707
+ )
708
+
709
+ with gr.Column(elem_classes="chatbot-container"):
710
+ gr.Markdown("## Chat")
711
+ chat_interface = gr.ChatInterface(
712
+ fn=chat_response_stream,
713
+ additional_inputs=[compressed_doc_state],
714
+ type="messages"
715
+ )
716
+
717
+ demo.queue(max_size=16).launch()
cache.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import DynamicCache
2
+ import torch
3
+ import os
4
+
5
+ class FinchCache(DynamicCache):
6
+ def __init__(self) -> None:
7
+ super().__init__()
8
+ self.key_cache = []
9
+ self.value_cache = []
10
+
11
+ @staticmethod
12
+ def _rotate_half(x):
13
+ x1 = x[..., : x.shape[-1] // 2]
14
+ x2 = x[..., x.shape[-1] // 2 :]
15
+ return torch.cat((-x2, x1), dim=-1)
16
+
17
+ def _apply_key_rotary_pos_emb(self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
18
+ return (key_states * cos) + (self._rotate_half(key_states) * sin)
19
+
20
+ @staticmethod
21
+ def _rerotate_cos_sin(x, inv_freq, important_pos_batch):
22
+ B, H, L = important_pos_batch.shape
23
+ device = important_pos_batch.device
24
+ device_type = x.device.type
25
+ dtype = x.dtype
26
+ idx = torch.arange(0, L, device=device)
27
+ idx = idx.unsqueeze(0)
28
+ inv_freq = inv_freq[None, None, :, None].float().expand(B, H, -1, 1) # (B, H, M, 1)
29
+ idx = idx[:, None, :].float().expand(B, H, L) # (B, H, L)
30
+ delta_pos = idx - important_pos_batch
31
+ delta_pos = delta_pos.unsqueeze(2) # (B, H, 1, L)
32
+
33
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
34
+
35
+ with torch.autocast(device_type=device_type, enabled=False):
36
+ freqs = delta_pos.float() * inv_freq.float()
37
+ freqs = freqs.transpose(2, 3)
38
+ emb = torch.cat((freqs, freqs), dim=-1)
39
+ cos = emb.cos().contiguous()
40
+ sin = emb.sin().contiguous()
41
+ return cos.to(dtype=dtype), sin.to(dtype=dtype)
42
+
43
+ @staticmethod
44
+ def gather_important_tokens(states, indices):
45
+ return torch.gather(states, 2, indices.unsqueeze(-1).expand(-1, -1, -1, states.size(3))).contiguous()
46
+
47
+ def compress_cache(self, layer_index, important_pos, inv_freq):
48
+ new_length = important_pos.size(2)
49
+ new_cos, new_sin = self._rerotate_cos_sin(self.key_cache[layer_index], inv_freq, important_pos)
50
+ gathered_keys = self.gather_important_tokens(self.key_cache[layer_index], important_pos).clone()
51
+ self.key_cache[layer_index] = self._apply_key_rotary_pos_emb(gathered_keys, new_cos, new_sin)
52
+ gathered_values = self.gather_important_tokens(self.value_cache[layer_index], important_pos).clone()
53
+ self.value_cache[layer_index] = gathered_values
54
+ self._seen_tokens = new_length
55
+
56
+ def save(self, path: str):
57
+ """Save the cache to disk, moving tensors to CPU."""
58
+ try:
59
+ os.makedirs(os.path.dirname(path), exist_ok=True)
60
+ torch.save(
61
+ {"key_cache": [k.cpu() for k in self.key_cache], "value_cache": [v.cpu() for v in self.value_cache]},
62
+ path,
63
+ )
64
+ except Exception as e:
65
+ print(f"Error occurred while saving: {e}")
66
+
67
+ @classmethod
68
+ def load(cls, path: str, device: str = "cpu") -> "FinchCache":
69
+ """Load the cache from disk and move tensors to the specified device."""
70
+ data = torch.load(path, map_location=device)
71
+ cache = cls()
72
+ cache.key_cache = [k.to(device) for k in data["key_cache"]]
73
+ cache.value_cache = [v.to(device) for v in data["value_cache"]]
74
+ cache._seen_tokens = cache.value_cache[0].size(2) if cache.value_cache else 0
75
+ return cache
global_compression.py ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from cache import FinchCache
4
+ from utils import repeat_kv
5
+ from transformers.models.llama.modeling_llama import rotate_half
6
+ import spaces
7
+
8
+ @spaces.GPU
9
+ def get_compressed_kv_cache(model, sink_tokens, step_size, target_token_size, context_ids, context_attention_mask, question_ids, question_attention_mask):
10
+ device = model.device
11
+ dtype = model.dtype
12
+ sink_tokens = sink_tokens
13
+ num_chunks = step_size
14
+ context_ids = context_ids.to(device)
15
+ context_attention_mask = context_attention_mask.to(device)
16
+ question_ids = question_ids.to(device)
17
+ question_attention_mask = question_attention_mask.to(device)
18
+ question_len = question_ids.size(1)
19
+ total_len = context_ids.size(1)
20
+ max_context_tokens_allowed = model.config.max_position_embeddings - question_len
21
+ if total_len > max_context_tokens_allowed:
22
+ num_chunks = max(step_size, math.ceil(total_len / max_context_tokens_allowed))
23
+
24
+ if total_len <= sink_tokens or num_chunks == 1:
25
+ # If the context is too short or only one chunk is desired, use the entire context.
26
+ context_ids_list = [context_ids]
27
+ context_attention_mask_list = [context_attention_mask]
28
+ else:
29
+ # Calculate how many tokens remain after the sink tokens.
30
+ remainder_len = total_len - sink_tokens
31
+
32
+ # Compute the base tokens per chunk and any leftover.
33
+ base = remainder_len // num_chunks
34
+ leftover = remainder_len % num_chunks
35
+
36
+ # Build a list of chunk sizes.
37
+ # First chunk gets the sink tokens plus base tokens.
38
+ chunk_sizes = [sink_tokens + base]
39
+
40
+ # Chunks 2 to num_chunks-1 get base tokens each.
41
+ for _ in range(num_chunks - 2):
42
+ chunk_sizes.append(base)
43
+
44
+ # The last chunk gets the remaining tokens (base + leftover).
45
+ if num_chunks > 1:
46
+ chunk_sizes.append(base + leftover)
47
+
48
+ # Now slice the context using the calculated sizes.
49
+ context_ids_list = []
50
+ context_attention_mask_list = []
51
+ offset = 0
52
+ for size in chunk_sizes:
53
+ end = offset + size
54
+ context_ids_list.append(context_ids[:, offset:end])
55
+ context_attention_mask_list.append(context_attention_mask[:, offset:end])
56
+ offset = end
57
+
58
+ # (Optional) Continue with the rest of your processing…
59
+ len_rest = max(total_len - sink_tokens, 1)
60
+ compression_factor = len_rest // target_token_size
61
+ if compression_factor < 1:
62
+ compression_factor = 1
63
+
64
+ tokenized_doc_chunks = []
65
+ for ids_chunk, mask_chunk in zip(context_ids_list, context_attention_mask_list):
66
+ tokenized_doc_chunks.append({"input_ids": ids_chunk, "attention_mask": mask_chunk})
67
+
68
+ print("Number of chunks: ", len(tokenized_doc_chunks))
69
+
70
+ rotary_emb = model.model.rotary_emb.to(device)
71
+ inv_freq = rotary_emb.inv_freq
72
+ batch_size = question_ids.size(0)
73
+ ones_mask = torch.ones(batch_size, 1, dtype=question_attention_mask.dtype, device=device)
74
+
75
+ cache = FinchCache()
76
+ past_cache_len = 0
77
+ past_attention_mask = torch.zeros(batch_size, 0, dtype=question_attention_mask.dtype, device=device)
78
+ num_chunks = len(tokenized_doc_chunks)
79
+
80
+ # Prepare a shared dictionary for hook outputs.
81
+ query_context_matrices = {}
82
+
83
+ # Define a hook function that uses a per-chunk offset stored on self.
84
+ def query_hook_fn(module, input, output):
85
+ layer_idx = getattr(module, "layer_idx", None)
86
+ if layer_idx is not None:
87
+ query_states = output.detach()
88
+ bsz, seq_len, hidden_dim = query_states.size()
89
+ num_query_heads = module.num_query_heads
90
+ head_dim = hidden_dim // num_query_heads
91
+ query_states = (
92
+ query_states.view(bsz, seq_len, num_query_heads, head_dim)
93
+ .transpose(1, 2)
94
+ .contiguous()
95
+ )
96
+ # Use self._current_chunk_offset to select only the new tokens.
97
+ query_context_matrices[layer_idx] = query_states[:, :, _current_chunk_offset:, :].clone()
98
+
99
+ # Pre-register hooks for all layers only once.
100
+ hooks = []
101
+ for i, layer in enumerate(model.model.layers):
102
+ layer.self_attn.q_proj.layer_idx = i # For tracking.
103
+ layer.self_attn.q_proj.num_query_heads = layer.self_attn.config.num_attention_heads
104
+ hook = layer.self_attn.q_proj.register_forward_hook(query_hook_fn)
105
+ hooks.append(hook)
106
+
107
+ # Process each document chunk sequentially.
108
+ for j, tokenized_doc_chunk in enumerate(tokenized_doc_chunks):
109
+ current_seq_length = tokenized_doc_chunk["input_ids"].size(1)
110
+ # Save the offset in an attribute the hook can access.
111
+ _current_chunk_offset = current_seq_length
112
+ # Clear the dictionary from any previous chunk.
113
+ query_context_matrices.clear()
114
+
115
+ # These chunks are already on the device.
116
+ chunk_input_ids = tokenized_doc_chunk["input_ids"].contiguous()
117
+ chunk_attention_mask = tokenized_doc_chunk["attention_mask"].contiguous()
118
+ segment_attention_mask = torch.cat(
119
+ [past_attention_mask, chunk_attention_mask, ones_mask], dim=-1
120
+ ).contiguous()
121
+ current_input_ids = torch.cat([chunk_input_ids, question_ids], dim=-1).contiguous()
122
+ current_attention_mask = torch.cat([segment_attention_mask, question_attention_mask], dim=-1).contiguous()
123
+
124
+ past_seen_tokens = cache.get_seq_length() if cache is not None else 0
125
+ cache_position = torch.arange(
126
+ past_seen_tokens + chunk_input_ids.shape[1],
127
+ past_seen_tokens + current_input_ids.shape[1],
128
+ device=device
129
+ )
130
+ causal_mask = model.model._prepare_4d_causal_attention_mask_with_cache_position(
131
+ current_attention_mask,
132
+ sequence_length=question_ids.size(1),
133
+ target_length=current_attention_mask.size(-1),
134
+ dtype=dtype,
135
+ device=device,
136
+ cache_position=cache_position,
137
+ batch_size=current_input_ids.size(0),
138
+ ).contiguous()
139
+
140
+ with torch.no_grad():
141
+ outputs = model.model(
142
+ input_ids=current_input_ids,
143
+ use_cache=True,
144
+ past_key_values=cache,
145
+ )
146
+ cache = outputs.past_key_values
147
+
148
+ len_question = question_ids.size(1)
149
+ # Now, for each transformer layer, update the cache using the query/key attention.
150
+ for layer_idx in range(len(model.model.layers)):
151
+ key_matrix = cache.key_cache[layer_idx]
152
+ query_matrix = query_context_matrices[layer_idx]
153
+ layer_cache_pos = torch.arange(
154
+ past_cache_len + current_seq_length,
155
+ past_cache_len + current_seq_length + len_question,
156
+ device=device
157
+ )
158
+ position_ids = layer_cache_pos.unsqueeze(0)
159
+ cos, sin = rotary_emb(query_matrix, position_ids)
160
+ cos = cos.unsqueeze(1)
161
+ sin = sin.unsqueeze(1)
162
+ query_matrix = (query_matrix * cos) + (rotate_half(query_matrix) * sin)
163
+ num_repeats = model.config.num_attention_heads // model.config.num_key_value_heads
164
+ key_matrix = repeat_kv(key_matrix, num_repeats)
165
+
166
+ scaling = math.sqrt(model.config.head_dim)
167
+ attention_matrix = torch.matmul(query_matrix, key_matrix.transpose(2, 3)) / scaling
168
+ causal_mask_sliced = causal_mask[:, :, :, : key_matrix.shape[-2]]
169
+ attention_matrix = attention_matrix + causal_mask_sliced
170
+ attention_matrix = torch.nn.functional.softmax(attention_matrix, dim=-1, dtype=torch.float32).to(query_matrix.dtype)
171
+ # Normalization
172
+ tol = 1e-8
173
+ binary_mask = (torch.abs(causal_mask_sliced.to(torch.float32)) < tol).to(torch.float32)
174
+ non_zero_counts = binary_mask.sum(dim=3, keepdim=True)
175
+ non_zero_counts = torch.clamp_min(non_zero_counts, 1.0).to(attention_matrix.dtype)
176
+ attention_matrix = attention_matrix / non_zero_counts
177
+ if j != num_chunks - 1:
178
+ attention_matrix = attention_matrix[:, :, :, : past_cache_len + current_seq_length].clone().contiguous()
179
+ else:
180
+ attention_matrix = attention_matrix[:, :, :, : past_cache_len + current_seq_length + len_question].clone().contiguous()
181
+ attention_matrix = torch.sum(attention_matrix, dim=-2)
182
+ attention_matrix = attention_matrix.view(
183
+ attention_matrix.size(0), model.config.num_key_value_heads, num_repeats, -1
184
+ ).sum(dim=2)
185
+ full_context_size = attention_matrix.size(-1)
186
+ attention_matrix[..., :sink_tokens] = float("inf")
187
+ if j == num_chunks - 1:
188
+ attention_matrix[..., -len_question:] = float("inf")
189
+ if j == 0:
190
+ k = int(sink_tokens + (max(0, current_seq_length - sink_tokens) // compression_factor))
191
+ k = min(k + past_cache_len, full_context_size)
192
+ elif j < num_chunks - 1:
193
+ to_keep_new = int(current_seq_length // compression_factor)
194
+ k = min(past_cache_len + to_keep_new, full_context_size)
195
+ else:
196
+ desired_final = sink_tokens + target_token_size + len_question# TODO remember to include the question tokens
197
+ k = desired_final if full_context_size >= desired_final else full_context_size
198
+ k = max(k, sink_tokens)
199
+ selected_indices = torch.topk(attention_matrix, k, dim=-1).indices
200
+ selected_indices, _ = torch.sort(selected_indices, dim=-1)
201
+ cache.compress_cache(layer_idx, selected_indices, inv_freq)
202
+
203
+ past_cache_len = cache._seen_tokens
204
+ past_attention_mask = torch.ones(1, past_cache_len, device=device)
205
+
206
+ # Remove the hooks once after all chunks are processed.
207
+ for hook in hooks:
208
+ hook.remove()
209
+
210
+ return cache
211
+
preprocess_document.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain_docling import DoclingLoader
2
+ from langchain_docling.loader import ExportType
3
+
4
+ # Import required classes for building a custom converter
5
+ from docling.document_converter import DocumentConverter, PdfFormatOption, InputFormat
6
+ from docling.datamodel.pipeline_options import PdfPipelineOptions
7
+ from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
8
+ import spaces
9
+
10
+ @spaces.GPU
11
+ def convert_to_markdown(file_objs, url, do_ocr, do_table_structure):
12
+ file_path = file_objs if file_objs is not None else url
13
+ pipeline_options = PdfPipelineOptions()
14
+ pipeline_options.do_ocr = do_ocr
15
+ pipeline_options.do_table_structure = do_table_structure
16
+ pdf_format_options = PdfFormatOption(
17
+ pipeline_options=pipeline_options,
18
+ backend=PyPdfiumDocumentBackend,
19
+ )
20
+ doc_converter = DocumentConverter(
21
+ allowed_formats=[InputFormat.PDF],
22
+ format_options={
23
+ InputFormat.PDF: pdf_format_options
24
+ }
25
+ )
26
+
27
+ # Pass the custom converter to the DoclingLoader.
28
+ loader = DoclingLoader(
29
+ file_path=file_path,
30
+ export_type=ExportType.MARKDOWN,
31
+ converter=doc_converter
32
+ )
33
+ docs = loader.load()
34
+ return docs[0].page_content
rag.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain_text_splitters import RecursiveCharacterTextSplitter
2
+ from langchain.schema.document import Document
3
+ from langchain_community.embeddings import HuggingFaceBgeEmbeddings
4
+ from langchain_chroma import Chroma
5
+ import spaces
6
+ from langchain_text_splitters import MarkdownHeaderTextSplitter
7
+ import os
8
+ from transformers import AutoTokenizer
9
+ api_token = os.getenv("HF_TOKEN")
10
+ model_name = "meta-llama/Llama-3.1-8B-Instruct"
11
+ tokenizer = AutoTokenizer.from_pretrained(model_name, token=api_token)
12
+
13
+ embedding_model = HuggingFaceBgeEmbeddings(
14
+ model_name="BAAI/bge-large-en-v1.5",
15
+ model_kwargs={"device": "cuda"},
16
+ encode_kwargs={"normalize_embeddings": True},
17
+ query_instruction=""
18
+ )
19
+
20
+
21
+ def create_rag_index(text_no_prefix):
22
+ """Loads the PDF, splits its text, and builds a vectorstore for naive RAG."""
23
+ text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(
24
+ tokenizer,
25
+ chunk_size=256,
26
+ chunk_overlap=0,
27
+ add_start_index=True,
28
+ strip_whitespace=True,
29
+ separators=["\n\n", "\n", ".", " ", ""],
30
+ )
31
+ # Concatenate pages and create Document objects.
32
+ docs = [Document(page_content=x) for x in text_splitter.split_text(text_no_prefix)]
33
+
34
+ vectorstore = Chroma.from_documents(documents=docs, embedding=embedding_model)
35
+ return vectorstore
36
+
37
+ def run_naive_rag_query(vectorstore, query, rag_token_size, prefix, task, few_shot_examples):
38
+ """
39
+ For naive RAG, retrieves top-k chunks (k based on target token size)
40
+ and generates an answer using those chunks.
41
+ """
42
+ k = max(1, rag_token_size // 256)
43
+ retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": k})
44
+ retrieved_docs = retriever.invoke(query)
45
+ for doc in retrieved_docs:
46
+ print("=================")
47
+ print(doc.page_content)
48
+ print("=================")
49
+ formatted_context = "\n\n".join([doc.page_content for doc in retrieved_docs])
50
+
51
+ rag_context = prefix + "Retrieved context: \n" + formatted_context + task + few_shot_examples
52
+
53
+ return rag_context
requirements.txt ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ torch
2
+ transformers==4.49.0
3
+ tokenizers
4
+ huggingface-hub
5
+ sentence-transformers
6
+ datasets
7
+ bitsandbytes
8
+ langchain
9
+ langchain-community
10
+ langchainhub
11
+ langchain-openai
12
+ langchain_chroma
13
+ docling
14
+ langchain_docling
utils.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
3
+ """
4
+ Repeats key-value hidden states along the key-value head dimension.
5
+ Args:
6
+ hidden_states (torch.Tensor): Input tensor with shape either
7
+ (batch, num_key_value_heads, seqlen, head_dim) or
8
+ (num_layers, batch, num_key_value_heads, seqlen, head_dim).
9
+ n_rep (int): Number of repetitions for key-value heads.
10
+ Returns:
11
+ torch.Tensor: The repeated tensor with shape either
12
+ (batch, num_attention_heads, seqlen, head_dim) or
13
+ (num_layers, batch, num_attention_heads, seqlen, head_dim).
14
+ """
15
+ if hidden_states.dim() == 4: # (batch, num_key_value_heads, seqlen, head_dim)
16
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
17
+ if n_rep == 1:
18
+ return hidden_states
19
+ hidden_states = hidden_states.unsqueeze(2).expand(batch, num_key_value_heads, n_rep, slen, head_dim)
20
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
21
+
22
+ elif hidden_states.dim() == 5: # (num_layers, batch, num_key_value_heads, seqlen, head_dim)
23
+ num_layers, batch, num_key_value_heads, slen, head_dim = hidden_states.shape
24
+ if n_rep == 1:
25
+ return hidden_states
26
+ hidden_states = hidden_states.unsqueeze(3).expand(num_layers, batch, num_key_value_heads, n_rep, slen, head_dim)
27
+ return hidden_states.reshape(num_layers, batch, num_key_value_heads * n_rep, slen, head_dim)
28
+
29
+ else:
30
+ raise ValueError("Input tensor must have 4 or 5 dimensions.")
31
+
32
+ import math
33
+
34
+ def calculate_tokens_suggest_compression_ratio(text, tokenizer, model):
35
+ """
36
+ Tokenizes the text and returns:
37
+ - token_count: the number of tokens in the input text.
38
+ - suggestions: a list of 6 candidate compression ratios.
39
+ - tokenized: a dictionary containing 'input_ids' and 'attention_mask'.
40
+
41
+ The suggestions are chosen so that compressing the token count by these ratios
42
+ would (in the worst case) bring the count within the maximum allowed tokens (128k).
43
+
44
+ If the text already fits within the context (<= 128k tokens),
45
+ the default suggestions [1, 2, 4, 8, 16, 32] are returned.
46
+ If the text is too long, we generate six values in logarithmic space
47
+ between max(required_ratio, 1) and 32 (or a higher upper bound if needed).
48
+ """
49
+ tokenized = tokenizer(text, return_tensors="pt", truncation=False)
50
+ token_ids = tokenized["input_ids"][0]
51
+ token_count = token_ids.size(0)
52
+ max_context = model.config.max_position_embeddings
53
+ if token_count <= max_context:
54
+ required_ratio = 1.0
55
+ else:
56
+ required_ratio = token_count / max_context
57
+ if required_ratio <= 1.0:
58
+ suggestions = [1, 2, 4, 8, 16, 32]
59
+ else:
60
+ lower_bound = max(required_ratio, 1)
61
+ if required_ratio < 32:
62
+ upper_bound = 32
63
+ else:
64
+ upper_bound = required_ratio * (32 / 1)
65
+ suggestions = [
66
+ round(math.exp(math.log(lower_bound) + i * (math.log(upper_bound) - math.log(lower_bound)) / (6 - 1)), 2)
67
+ for i in range(6)
68
+ ]
69
+
70
+ return token_count, suggestions, tokenized
71
+
72
+
73
+ def update_retrieval_context(token_count, compression_ratio):
74
+ retrieval_tokens = int(token_count / compression_ratio)
75
+ return f"Retrieval context tokens (after compression): {retrieval_tokens}"
76
+
77
+