File size: 2,692 Bytes
6202584 b7f853e 6202584 b7f853e 09f0839 6202584 b7f853e 6202584 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
from .parsercode.DFG import DFG_python,DFG_java,DFG_ruby,DFG_go,DFG_php,DFG_javascript,DFG_csharp
from .parsercode.utils import (remove_comments_and_docstrings,
tree_to_token_index,
index_to_code_token,
tree_to_variable_index)
from tree_sitter import Language, Parser
import os
dfg_function={
'python':DFG_python,
'java':DFG_java,
'ruby':DFG_ruby,
'go':DFG_go,
'php':DFG_php,
'javascript':DFG_javascript,
'c_sharp':DFG_csharp,
}
def calc_syntax_match(references, candidate, lang):
return corpus_syntax_match([references], [candidate], lang)
def corpus_syntax_match(references, candidates, lang):
curr_path = os.path.dirname(os.path.abspath(__file__))
JAVA_LANGUAGE = Language(curr_path + '/parsercode/my-languages.so', lang)
parser = Parser()
parser.set_language(JAVA_LANGUAGE)
match_count = 0
total_count = 0
for i in range(len(candidates)):
references_sample = references[i]
candidate = candidates[i]
for reference in references_sample:
try:
candidate=remove_comments_and_docstrings(candidate,'java')
except:
pass
try:
reference=remove_comments_and_docstrings(reference,'java')
except:
pass
candidate_tree = parser.parse(bytes(candidate,'utf8')).root_node
reference_tree = parser.parse(bytes(reference,'utf8')).root_node
def get_all_sub_trees(root_node):
node_stack = []
sub_tree_sexp_list = []
depth = 1
node_stack.append([root_node, depth])
while len(node_stack) != 0:
cur_node, cur_depth = node_stack.pop()
sub_tree_sexp_list.append([cur_node.sexp(), cur_depth])
for child_node in cur_node.children:
if len(child_node.children) != 0:
depth = cur_depth + 1
node_stack.append([child_node, depth])
return sub_tree_sexp_list
cand_sexps = [x[0] for x in get_all_sub_trees(candidate_tree)]
ref_sexps = get_all_sub_trees(reference_tree)
# print(cand_sexps)
# print(ref_sexps)
for sub_tree, depth in ref_sexps:
if sub_tree in cand_sexps:
match_count += 1
total_count += len(ref_sexps)
score = match_count / total_count
return score
|