File size: 58,923 Bytes
bceeb47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc57ca1
 
 
 
bceeb47
 
 
 
eddf12a
bceeb47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
import re
import os
import faiss
import whisper
import ffmpeg
import tempfile
import requests
import numpy as np
import pandas as pd
import streamlit as st

from openai import OpenAI
from transformers import pipeline
from sentence_transformers import SentenceTransformer
from newsplease import NewsPlease
from streamlit_echarts import st_echarts
from streamlit_option_menu import option_menu

# NEWS to check
# https://fbe.unimelb.edu.au/newsroom/fake-news-in-the-age-of-covid-19                          True Claim
# https://newssalutebenessere.altervista.org/covid-19-just-a-simple-flue-or-something-else/     False Claim

###### CONFIGURATIONS ######
# Debug mode
debug = False

# File paths
embeddings_file = r"./data/abstract_embeddings.npy"
pmid_file = r"./data/pmids.npy"
faiss_index_file = r"./data/faiss_index.index"
file_path = r'./data/parte_205.csv'

# Initialize OpenAI API client
client = OpenAI(
    base_url="https://integrate.api.nvidia.com/v1",
    api_key=st.secrets.nvidia
)

# Load data
data = pd.read_csv(file_path)

# Load the model
model = SentenceTransformer('all-MiniLM-L6-v2')


def get_article_data(url):
    """
    Extracts article data from a specified URL.
    
    Args:
        url (str): URL of the article to analyze.
    
    Returns:
        dict: Structured article data, including: title, authors, publication date, and content.
    """
    try:
        # Make an HTTP request to the specified URL
        response = requests.get(url)
        # Check if the request was successful (i.e., status code 200)
        response.raise_for_status()

        # Extract the HTML content from the response
        html_content = response.text

        # Use NewsPlease to extract structured data from the HTML content
        article = NewsPlease.from_html(html_content, url=url)

        # Return the structured article data
        return {
            "title": article.title,
            "authors": article.authors,
            "date_publish": article.date_publish,
            "content": article.maintext,
        }

    except requests.exceptions.RequestException as e:
        return {"error": f"Error during URL retrieval: {e}"}

    except Exception as e:
        return {"error": f"Error processing the article: {e}"}


def extract_and_split_claims(claims):
    """
    Extracts and splits claims from a given string.
    
    Args:
        claims (str): String containing claims.
    
    Returns:
        dict: Dictionary containing the extracted claims.
    """
    start_index = claims.find("Claim 1:")
    if start_index != -1:
        claims = claims[start_index:]

    claim_lines = claims.strip().split("\n\n")

    claims_dict = {}
    for i, claim in enumerate(claim_lines, start=1):
        claims_dict[f"Claim_{i}"] = claim

    for var_name, claim_text in claims_dict.items():
        globals()[var_name] = claim_text

    return claims_dict


def extract_label_and_score(result):
    """
    Extracts the predicted label and score from the result string.
    
    Args:
        result (str): String containing the prediction result.
    
    Returns:
        tuple: Predicted label and score.
    """
    # Extract the predicted label
    label_match = re.search(r"'labels': \['(.*?)'", result)
    predicted_label = label_match.group(1) if label_match else None

    # Extract the score
    score_match = re.search(r"'scores': \[(\d+\.\d+)", result)
    score_label = float(score_match.group(1)) if score_match else None

    return predicted_label, score_label


def clean_phrases(phrases, pattern):
    """
    Clean and extract phrases from a list of strings using a specified pattern.
    
    Args:
        phrases (list): List of strings containing phrases.
        pattern (str): Regular expression pattern to extract phrases.
    
    Returns:
        list: List of cleaned phrases as dictionaries with text and abstract keys
    """
    cleaned_phrases = []

    for phrase in phrases:
        matches = re.findall(pattern, phrase)
        cleaned_phrases.extend([{"text": match[0], "abstract": f"abstract_{match[1]}"} for match in matches])

    return cleaned_phrases


def highlight_phrases(abstract_text, phrases, color, label):
    """
    Highlight phrases in the abstract text with the specified background color.
    
    Args:
        abstract_text (str): Text of the abstract to highlight.
        phrases (list): List of phrases to highlight.
        color (str): Background color to use for highlighting.
        label (str): Predicted label for the claim.
    
    Returns:
        str: Abstract text with highlighted phrases.
    """
    # Switch colors if the label is "False"
    if label.lower() == "false":
        color = "lightgreen" if color == "red" else color

    # Highlight each phrase in the abstract text
    for phrase in phrases:
        abstract_text = re.sub(
            re.escape(phrase["text"]),
            f'<span style="background-color: {color}; font-weight: bold; border: 1px solid black; border-radius: 5px;">{phrase["text"]}</span>',
            abstract_text,
            flags=re.IGNORECASE
        )

    return abstract_text


def parse_response(response):
    """
    Parse the response from the model and extract the fields.
    
    Args:
        response (str): Response string from the model.
    
    Returns:
        tuple: Extracted fields from the response.
    """
    # Initial values for the fields
    first_label = "Non trovato"
    justification = "Non trovato"
    supporting = "Non trovato"
    refusing = "Non trovato"
    notes = "Non trovato"

    # Regular expression patterns for extracting fields
    patterns = {
        "first_label": r"Label:\s*(.*?)\n",
        "justification": r"Justification:\s*(.*?)(?=\nSupporting sentences)",
        "supporting": r"Supporting sentences from abstracts:\n(.*?)(?=\nRefusing sentences)",
        "refusing": r"Refusing sentences from abstracts:\n(.*?)(?=\nNote:)",
        "notes": r"Note:\s*(.*)"
    }

    # Extract the fields using regular expressions
    if match := re.search(patterns["first_label"], response, re.DOTALL):
        first_label = match.group(1).strip()
    if match := re.search(patterns["justification"], response, re.DOTALL):
        justification = match.group(1).strip()
    if match := re.search(patterns["supporting"], response, re.DOTALL):
        supporting = [{"text": sentence.strip(), "abstract": f"abstract_{i+1}"} for i, sentence in enumerate(match.group(1).strip().split('\n'))]
    if match := re.search(patterns["refusing"], response, re.DOTALL):
        refusing = [{"text": sentence.strip(), "abstract": f"abstract_{i+1}"} for i, sentence in enumerate(match.group(1).strip().split('\n'))]
    if match := re.search(patterns["notes"], response, re.DOTALL):
        notes = match.group(1).strip()

    # Return the extracted fields
    return first_label, justification, supporting, refusing, notes


def load_embeddings(embeddings_file, pmid_file, faiss_index_file, debug=False):
    """
    Load embeddings, PMIDs, and FAISS index from the specified files.
    
    Args:
        embeddings_file (str): File path for the embeddings.
        pmid_file (str): File path for the PMIDs.
        faiss_index_file (str): File path for the FAISS index.
    
    Returns:
        tuple: Tuple containing the embeddings, PMIDs, and FAISS index.
    """
    # Check if the files exist
    if not (os.path.exists(embeddings_file) and os.path.exists(pmid_file) and os.path.exists(faiss_index_file)):
        raise FileNotFoundError("One or more files not found. Please check the file paths.")

    # Load the embeddings and PMIDs
    embeddings = np.load(embeddings_file)
    pmids = np.load(pmid_file, allow_pickle=True)

    # Load the FAISS index
    index = faiss.read_index(faiss_index_file)

    if debug:
        print("Embeddings, PMIDs, and FAISS index loaded successfully.")

    return embeddings, pmids, index


def retrieve_top_abstracts(claim, model, index, pmids, data, top_k=5):
    """
    Retrieve the top abstracts from the FAISS index for a given claim.
    
    Args:
        claim (str): Claim to fact-check.
        model (SentenceTransformer): Sentence transformer model for encoding text.
        index (faiss.IndexFlatIP): FAISS index for similarity search.
        pmids (np.ndarray): Array of PMIDs for the abstracts.
        data (pd.DataFrame): DataFrame containing the abstract data.
        top_k (int): Number of top abstracts to retrieve.
    
    Returns:
        list: List of tuples containing the abstract text, PMID, and distance.
    """
    # Encode the claim using the SentenceTransformer model
    claim_embedding = model.encode([claim])
    faiss.normalize_L2(claim_embedding)  # Normalize the claim embedding (with L2 norm)
    distances, indices = index.search(claim_embedding, top_k)

    # Retrieve the top abstracts based on the indices
    results = []
    for j, i in enumerate(indices[0]):
        pmid = pmids[i]
        abstract_text = data[data['PMID'] == pmid]['AbstractText'].values[0]
        distance = distances[0][j]
        results.append((abstract_text, pmid, distance))

    return results


def generate_justification(query, justification):
    """
    Generate a justification for the claim using the Zero-Shot Classification model.
    
    Args:
        query (str): Claim to fact-check.
        justification (str): Justification for the claim.
    
    Returns:
        str: Final justification for the claim.
    """
    # Define the classes for the Zero-Shot Classification model
    Class = ["True", "False","NEI"]

    # Generate the justification text
    justification_text = (
        f'Justification: "{justification}"'
    )

    # Limit the justification text to a maximum length
    max_length = 512
    if len(justification_text) > max_length:
        justification_text = justification_text[:max_length]

    # Generate the final justification using the Zero-Shot Classification model
    output = zeroshot_classifier(
        query,
        Class,
        hypothesis_template=f"The claim is '{{}}' for: {justification_text}",
        multi_label=False
    )

    # Prepare the final justification text
    final_justification = f'{output}.'

    return final_justification


def llm_reasoning_template(query):
    """
    Generate a template for the prompt used for justification generation by the LLM model.
    
    Args:
        query (str): Claim to fact-check.
    
    Returns:
        str: Reasoning template for the claim.
    """
    llm_reasoning_prompt = f"""<<SYS>> [INST]

    You are a helpful, respectful and honest Doctor. Always answer as helpfully as possible using the context text provided.

    Use the information in Context.

    Elaborate the Context to generate a new information.

    Use only the knowledge in Context to answer.

    Answer describing in a scentific way. Be formal during the answer. Use the third person.

    Answer without mentioning the Context. Use it but don't refer to it in the text.

    To answer, use max 300 word.

    Create a Justification from the sentences given.

    Use the structure: Justification: The claim is (label) because... (don't use the word "context")

    Write as an online doctor to create the Justification.

    After, give some sentences from Context from scientific papers: that supports the label and reject the label.

    Supporting sentences from abstracts:
    information sentence from abstract_1: 
    information sentence from abstract_2: 
    ..
    Refusing sentences from abstracts:
    information sentence from abstract_1: 
    information sentence from abstract_2: 
    ..
    Add where it comes from (abstract_1, abstract_2, abstract_3, abstract_4, abstract_5)

    With the answer, gives a line like: "Label:". Always put Label as first. After Label, give the Justification.
    The justification will be always given as Justification: 
    Label can be yes, no, NEI, where yes: claim is true. no: claim is false. NEI: not enough information.
    The Label will be chosen with a voting system of support/refuse before.

    [/INST] <</SYS>>

    [INST] Question: {query} [/INST]
    [INST] Context from scientific papers: 
    """

    return llm_reasoning_prompt


def claim_detection_template(full_text):
    """
    Generate a template for the prompt used for claim detection by the LLM model.
    
    Args:
        full_text (str): Full text to analyze.
    
    Returns:
        str: Template for claim detection.
    """
    claim_detection_prompt = f"""<<SYS>> [INST]

    Your task is to extract from the text potential health related question to verify their veracity.

    The context extracted from the online where to take the claim is: {full_text}

    Create simple claim of single sentence from the context.

    Dont's use *

    Give just the claim. Don't write other things.

    Extract only health related claim.

    Rank eventual claim like:

    Claim 1:
    Claim 2:
    Claim 3:
    
    Use always this structure.
    Start every claim with "Claim " followed by the number.

    The number of claims may go from 1 to a max of 5.

    The claims have to be always health related. [/INST] <</SYS>>
    """

    return claim_detection_prompt


# Page and Title Configuration
st.set_page_config(page_title="CER - Combining Evidence and Reasoning Demo", layout="wide", initial_sidebar_state="collapsed")
st.markdown("<h1 style='text-align: center; color: inherit;'>βœ”οΈβœ¨ CER - Biomedical Fact Checker</h1>", unsafe_allow_html=True)

# Horizontal option menu for selecting the page
page = option_menu(None, ["Single claim check", "Page check", "Video check"], 
    icons=['check', 'ui-checks'], 
    menu_icon="cast", default_index=0, orientation="horizontal")

# Sidebar Configuration
st.sidebar.title("πŸ”¬ Combining Evidence and Reasoning Demo")
st.sidebar.caption("πŸ” Fact-check biomedical claims using scientific evidence and reasoning.")
st.sidebar.markdown("---")
st.sidebar.caption("#### ℹ️ About")
st.sidebar.caption("This is a demo application for fact-checking biomedical claims using scientific evidence and reasoning. It uses a combination of language models, scientific literature, and reasoning to provide explanations for the predictions.")

# Load embeddings, PMIDs, and FAISS index
if 'embeddings_loaded' not in st.session_state:
    embeddings, pmids, index = load_embeddings(embeddings_file, pmid_file, faiss_index_file, debug)
    st.session_state.embeddings = embeddings
    st.session_state.pmids = pmids
    st.session_state.index = index
    st.session_state.embeddings_loaded = True
else:
    embeddings = st.session_state.embeddings
    pmids = st.session_state.pmids
    index = st.session_state.index

# Check if the claim and top_abstracts are in the session state
if 'claim' not in st.session_state:
    st.session_state.claim = ""

if 'top_abstracts' not in st.session_state:
    st.session_state.top_abstracts = []


#### Single claim check PAGE ####
if page == "Single claim check":
    st.subheader("Single claim check")
    st.caption("✨ Enter a single claim to fact-check and hit the button to see the results! πŸ”")

    st.session_state.claim = st.text_input("Claim to fact-check:")

    if st.button("✨ Fact Check"):

        if st.session_state.claim:
            # Retrieve the top abstracts for the claim
            top_abstracts = retrieve_top_abstracts(st.session_state.claim, model, index, pmids, data, top_k=5)
            st.session_state.top_abstracts = top_abstracts

            st.markdown("### **Results**")

            with st.container():
                for i, (abstract, pmid, distance) in enumerate(st.session_state.top_abstracts, 1):
                    pubmed_url = f"https://pubmed.ncbi.nlm.nih.gov/{pmid}/"
                    globals()[f"abstract_{i}"] = abstract
                    globals()[f"reference_{i}"] = pubmed_url
                    globals()[f"distance_{i}"] = distance

                with st.spinner('πŸ” We are checking...'):
                    try:
                        # Retrieve the question from the DataFrame
                        query = st.session_state.claim

                        # Generate the reasoning template
                        prompt_template = llm_reasoning_template(query)

                        # Add the abstracts to the prompt
                        for i in range(1, len(st.session_state.top_abstracts)):
                            prompt_template += f"{globals()[f'abstract_{i}']} ; "
                        prompt_template += f"{globals()[f'abstract_{i+1}']} [/INST]"

                        # Call the API
                        completion = client.chat.completions.create(
                            model="meta/llama-3.1-405b-instruct",
                            messages=[{"role": "user", "content": prompt_template}],
                            temperature=0.1,
                            top_p=0.7,
                            max_tokens=1024,
                            stream=True
                        )

                        # Collect the response
                        answer = ""
                        for chunk in completion:
                            if chunk.choices[0].delta.content:
                                answer += chunk.choices[0].delta.content

                        # Debug: Check the answer
                        if debug:
                            print(f"{answer}")

                    except Exception as e:
                        st.write(f"Error processing index: {e}")

                with st.spinner('πŸ€”πŸ’¬ Justifying the check...'):
                    # Perform parsing and separate variables
                    zeroshot_classifier = pipeline(
                        "zero-shot-classification", model="MoritzLaurer/deberta-v3-large-zeroshot-v1.1-all-33"
                    )
                    first_label, justification, supporting, refusing, notes = parse_response(answer)

                with st.spinner('πŸ•΅οΈβ€β™‚οΈπŸ“œ We are finding evidence...'):
                    # Generate the justification for the claim
                    result = generate_justification(st.session_state.claim, justification)
                    predicted_label, score_label = extract_label_and_score(result)

                    if predicted_label == "True":
                        color = f"rgba(0, 204, 0, {score_label})"  # Green
                    elif predicted_label == "False":
                        color = f"rgba(204, 0, 0, {score_label})"  # Red
                    elif predicted_label == "NEI":
                        color = f"rgba(255, 255, 0, {score_label})"  # Yellow
                    else:
                        color = "black"  # Default color

                    # Calculate the confidence score
                    confidence = f"{score_label * 100:.2f}%"
                    st.caption(f"πŸ“ The Claim: {st.session_state.claim}")
                    st.markdown(
                        f"**Prediction of claim:** Most likely <span style='color: {color}; font-weight: bold;'>{predicted_label}</span> with a confidence of <span style='color: {color}; font-weight: bold;'>{confidence}</span>",
                        unsafe_allow_html=True
                    )
                    st.markdown("### **Justification**")
                    st.markdown(f'<p> {justification}</p>', unsafe_allow_html=True)

                    # Extract the abstracts and references
                    abstracts = {}
                    for i in range(1, len(st.session_state.top_abstracts) + 1):
                        abstracts[f"abstract_{i}"] = globals()[f"abstract_{i}"]

                    pattern = r'"\s*(.*?)\s*"\s*\(abstract_(\d+)\)'

                    supporting_texts = []
                    for item in supporting:
                        try:
                            supporting_texts.append(item["text"])
                        except (TypeError, KeyError):
                            continue
                    supporting = clean_phrases(supporting_texts, pattern)

                    refusing_text = []
                    for item in refusing:
                        try:
                            refusing_text.append(item["text"])
                        except (TypeError, KeyError):
                            continue
                    refusing = clean_phrases(refusing_text, pattern)

                    if debug:
                        print(supporting)
                        print(refusing)

                    processed_abstracts = {}
                    for abstract_name, abstract_text in abstracts.items():
                        # Highlight supporting phrases in green
                        supporting_matches = [phrase for phrase in supporting if phrase["abstract"] == abstract_name]
                        abstract_text = highlight_phrases(abstract_text, supporting_matches, "lightgreen", predicted_label)
                        
                        # Highlight refusing phrases in red
                        refusing_matches = [phrase for phrase in refusing if phrase["abstract"] == abstract_name]
                        abstract_text = highlight_phrases(abstract_text, refusing_matches, "red", predicted_label)
                        
                        # Add only if supporting matches are found
                        if supporting_matches:
                            # Add the reference if a corresponding variable exists
                            reference_variable = f"reference_{abstract_name.split('_')[1]}"
                            if reference_variable in globals():
                                reference_value = globals()[reference_variable]
                                abstract_text += f"<br><br><strong>πŸ”— Reference:</strong> {reference_value}"
                            
                            # Add the processed abstract
                            processed_abstracts[abstract_name] = abstract_text

                    # Iterate over the processed abstracts and remove duplicates
                    seen_contents = set()  # Set to track already seen contents
                    evidence_counter = 1

                    # Display the results of the processed abstracts with numbered expanders
                    st.markdown("### **Scientific Evidence**")

                    # Add a legend for the colors
                    legend_html = """
                        <div style="display: flex; flex-direction: column; align-items: flex-start;">
                        <div style="display: flex; align-items: center; margin-bottom: 5px;">
                        <div style="width: 20px; height: 20px; background-color: lightgreen; margin-right: 10px; border-radius: 5px;"></div>
                        <div>Positive Evidence</div>
                        </div>
                        <div style="display: flex; align-items: center; margin-bottom: 5px;">
                        <div style="width: 20px; height: 20px; background-color: red; margin-right: 10px; border-radius: 5px;"></div>
                        <div>Negative Evidence</div>
                        </div>
                        <div style="display: flex; align-items: center; margin-bottom: 5px;">
                        <div style="width: 20px; height: 20px; background-color: yellow; margin-right: 10px; border-radius: 5px;"></div>
                        <div>Dubious Evidence</div>
                        </div>
                        </div>
                    """
                    col1, col2 = st.columns([0.8, 0.2])

                    with col1:
                        if processed_abstracts:
                            tabs = st.tabs([f"Scientific Evidence {i}" for i in range(1, len(processed_abstracts) + 1)])
                            for tab, (name, content) in zip(tabs, processed_abstracts.items()):
                                if content not in seen_contents:  # Check for duplicates
                                    seen_contents.add(content)
                                    with tab:
                                        # Switch colors if the label is "False"
                                        if predicted_label.lower() == "false":
                                            content = content.replace("background-color: lightgreen", "background-color: tempcolor")
                                            content = content.replace("background-color: red", "background-color: lightgreen")
                                            content = content.replace("background-color: tempcolor", "background-color: red")
                                        
                                        # Use `st.write` to display HTML directly
                                        st.write(content, unsafe_allow_html=True)
                        else:
                            st.markdown("No relevant Scientific Evidence found")

                    with col2:
                        st.caption("Legend")
                        st.markdown(legend_html, unsafe_allow_html=True)


#### Web page check PAGE ####
elif page == "Page check":
    st.subheader("Page check")
    st.caption("✨ Enter a URL to fact-check the health-related claims on the page and hit the button to see the results! πŸ”")

    url = st.text_input("URL to fact-check:")

    if st.button("✨ Fact Check") and url:
        st.session_state.true_count = 0
        st.session_state.false_count = 0
        st.session_state.nei_count = 0

        with st.spinner('πŸŒπŸ” Extracting claims...'):
            article_data = get_article_data(url)
            
            try:
                # Retrieve the claims from the article data
                prompt_template = claim_detection_template(article_data)

                # Call the API
                completion = client.chat.completions.create(
                    model="meta/llama-3.1-405b-instruct",
                    messages=[{"role": "user", "content": prompt_template}],
                    temperature=0.1,
                    top_p=0.7,
                    max_tokens=1024,
                    stream=True
                )

                # Collect the response
                answer = ""
                for chunk in completion:
                    if chunk.choices[0].delta.content:
                        answer += chunk.choices[0].delta.content

                # Debug: Controlla la risposta
                print(f"{answer}")

            except Exception as e:
                print(f"Error {e}")

            claims_dict = extract_and_split_claims(answer)

        # Display the extracted claims
        st.markdown("### **Claims Extracted**")
        st.caption("πŸ” Here are the health-related claims extracted from the page:")
        cols = st.columns(3)
        for i, (claim_key, claim_text) in enumerate(claims_dict.items(), 1):
            col = cols[(i - 1) % 3]
            with col.expander(f"Claim {i} πŸ“", expanded=True):
                st.write(claim_text)

        # Display the results for the extracted claims
        st.markdown("### **Results**")
        st.caption("πŸ” Here are the results for the extracted claims:")
        for claim_key, claim_text in claims_dict.items():
            st.session_state.claim = claim_text
            if st.session_state.claim:
                top_abstracts = retrieve_top_abstracts(st.session_state.claim, model, index, pmids, data, top_k=5)
                st.session_state.top_abstracts = top_abstracts  # Salva i risultati

            with st.expander(f"βœ”οΈ **Results for {claim_key}**", expanded=True):
                for i, (abstract, pmid, distance) in enumerate(st.session_state.top_abstracts, 1):
                    pubmed_url = f"https://pubmed.ncbi.nlm.nih.gov/{pmid}/"
                    globals()[f"abstract_{i}"] = abstract
                    globals()[f"reference_{i}"] = pubmed_url
                    globals()[f"distance_{i}"] = distance

                with st.spinner('πŸ” We are checking...'):
                    try:
                        # Retrieve the question from the DataFrame
                        query = st.session_state.claim

                        # Generate the reasoning template
                        prompt_template = llm_reasoning_template(query)

                        # Add the abstracts to the prompt
                        for i in range(1, len(st.session_state.top_abstracts)):
                            prompt_template += f"{globals()[f'abstract_{i}']} ; "
                        prompt_template += f"{globals()[f'abstract_{i+1}']} [/INST]"

                        # Call the API
                        completion = client.chat.completions.create(
                            model="meta/llama-3.1-405b-instruct",
                            messages=[{"role": "user", "content": prompt_template}],
                            temperature=0.1,
                            top_p=0.7,
                            max_tokens=1024,
                            stream=True
                        )

                        # Collect the response
                        answer = ""
                        for chunk in completion:
                            if chunk.choices[0].delta.content:
                                answer += chunk.choices[0].delta.content

                        # Debug: Check the answer
                        if debug:
                            print(f"{answer}")

                    except Exception as e:
                            st.write(f"Error processing index: {e}")

                with st.spinner('πŸ€”πŸ’¬ Justifying the check...'):
                    # Perform parsing and separate variables
                    zeroshot_classifier = pipeline(
                        "zero-shot-classification", model="MoritzLaurer/deberta-v3-large-zeroshot-v1.1-all-33"
                    )
                    first_label, justification, supporting, refusing, notes = parse_response(answer)
                
                with st.spinner('πŸ•΅οΈβ€β™‚οΈπŸ“œ We are finding evidence...'):
                    # Generate the justification for the claim
                    result = generate_justification(st.session_state.claim, justification)
                    predicted_label, score_label = extract_label_and_score(result)

                    # Update the counts based on the predicted label
                    if predicted_label == "True":
                        color = f"rgba(0, 204, 0, {score_label})"  # Green
                        st.session_state.true_count += 1
                    elif predicted_label == "False":
                        color = f"rgba(204, 0, 0, {score_label})"  # Red
                        st.session_state.false_count += 1
                    elif predicted_label == "NEI":
                        color = f"rgba(255, 255, 0, {score_label})"  # Yellow
                        st.session_state.nei_count += 1
                    else:
                        color = "black"  # Default color

                    confidence = f"{score_label * 100:.2f}%" 
                    st.caption(f"πŸ“ The Claim: {st.session_state.claim}")
                    st.markdown(
                        f"**Prediction of claim:** Most likely <span style='color: {color}; font-weight: bold;'>{predicted_label}</span> with a confidence of <span style='color: {color}; font-weight: bold;'>{confidence}</span>",
                        unsafe_allow_html=True
                    )
                    
                    st.markdown("### **Justification**")
                    st.markdown(f'<p> {justification}</p>', unsafe_allow_html=True)
                    
                    abstracts = {}
                    for i in range(1, len(st.session_state.top_abstracts) + 1):
                        abstracts[f"abstract_{i}"] = globals()[f"abstract_{i}"]
                    
                    pattern = r'"\s*(.*?)\s*"\s*\(abstract_(\d+)\)'
                    
                    supporting_texts = []
                    for item in supporting:
                        try:
                            supporting_texts.append(item["text"])
                        except (TypeError, KeyError):
                            continue
                    supporting = clean_phrases(supporting_texts, pattern)

                    refusing_text = []
                    for item in refusing:
                        try:
                            refusing_text.append(item["text"])
                        except (TypeError, KeyError):
                            continue
                    refusing = clean_phrases(refusing_text, pattern)

                    if debug:
                        print(supporting)
                        print(refusing)

                    processed_abstracts = {}
                    for abstract_name, abstract_text in abstracts.items():
                        # Highlight supporting phrases in green
                        supporting_matches = [phrase for phrase in supporting if phrase["abstract"] == abstract_name]
                        abstract_text = highlight_phrases(abstract_text, supporting_matches, "lightgreen", predicted_label)
                        
                        # Highlight refusing phrases in red
                        refusing_matches = [phrase for phrase in refusing if phrase["abstract"] == abstract_name]
                        abstract_text = highlight_phrases(abstract_text, refusing_matches, "red", predicted_label)
                        
                        # Add only if supporting matches are found
                        if supporting_matches:
                            # Add the reference if a corresponding variable exists
                            reference_variable = f"reference_{abstract_name.split('_')[1]}"
                            if reference_variable in globals():
                                reference_value = globals()[reference_variable]
                                abstract_text += f"<br><br><strong>πŸ”— Reference:</strong> {reference_value}"
                            
                            # Add the processed abstract
                            processed_abstracts[abstract_name] = abstract_text

                    # Iterate over the processed abstracts and remove duplicates
                    seen_contents = set()  # Set to track already seen contents
                    evidence_counter = 1
                    
                    # Display the results of the processed abstracts with numbered expanders
                    st.markdown("### **Scientific Evidence**")
                    
                    # Add a legend for the colors
                    legend_html = """
                        <div style="display: flex; flex-direction: column; align-items: flex-start;">
                        <div style="display: flex; align-items: center; margin-bottom: 5px;">
                        <div style="width: 20px; height: 20px; background-color: lightgreen; margin-right: 10px; border-radius: 5px;"></div>
                        <div>Positive Evidence</div>
                        </div>
                        <div style="display: flex; align-items: center; margin-bottom: 5px;">
                        <div style="width: 20px; height: 20px; background-color: red; margin-right: 10px; border-radius: 5px;"></div>
                        <div>Negative Evidence</div>
                        </div>
                        <div style="display: flex; align-items: center; margin-bottom: 5px;">
                        <div style="width: 20px; height: 20px; background-color: yellow; margin-right: 10px; border-radius: 5px;"></div>
                        <div>Dubious Evidence</div>
                        </div>
                        </div>
                    """
                    col1, col2 = st.columns([0.8, 0.2])
                    
                    with col1:
                        if processed_abstracts:
                            tabs = st.tabs([f"Scientific Evidence {i}" for i in range(1, len(processed_abstracts) + 1)])
                            for tab, (name, content) in zip(tabs, processed_abstracts.items()):
                                if content not in seen_contents:  # Check for duplicates
                                    seen_contents.add(content)
                                    with tab:
                                        # Switch colors if the label is "False"
                                        if predicted_label.lower() == "false":
                                            content = content.replace("background-color: lightgreen", "background-color: tempcolor")
                                            content = content.replace("background-color: red", "background-color: lightgreen")
                                            content = content.replace("background-color: tempcolor", "background-color: red")
                                        
                                        # Use `st.write` to display HTML directly
                                        st.write(content, unsafe_allow_html=True)
                        else:
                            st.markdown("No relevant Scientific Evidence found")
                    
                    with col2:
                        st.caption("Legend")
                        st.markdown(legend_html, unsafe_allow_html=True)

        st.markdown("### **Page Summary**")
        st.caption("πŸ“Š Here is a summary of the results for the extracted claims:")

        # Labels and Colors
        labels = ['True', 'False', 'NEI']
        colors = ['green', 'red', 'yellow']

        # Sizes of the pie chart
        sizes = [
            st.session_state.true_count,
            st.session_state.false_count,
            st.session_state.nei_count
        ]

        # Configure the Pie Chart Options
        options = {
            "tooltip": {"trigger": "item"},
            "legend": {"top": "5%", "left": "center"},
            "series": [
            {
                "name": "Document Status",
                "type": "pie",
                "radius": ["40%", "70%"],
                "avoidLabelOverlap": False,
                "itemStyle": {
                "borderRadius": 10,
                "borderColor": "#fff",
                "borderWidth": 2,
                },
                "label": {"show": True, "position": "center"},
                "emphasis": {
                "label": {"show": True, "fontSize": "20", "fontWeight": "bold"}
                },
                "labelLine": {"show": False},
                "data": [
                {"value": sizes[0], "name": labels[0], "itemStyle": {"color": colors[0]}},
                {"value": sizes[1], "name": labels[1], "itemStyle": {"color": colors[1]}},
                {"value": sizes[2], "name": labels[2], "itemStyle": {"color": colors[2]}},
                ],
            }
            ],
        }

        # Display the Pie Chart
        st1, st2 = st.columns([0.6, 0.4])

        with st1:
            st.markdown("#### The page is :")
            true_count = st.session_state.true_count
            false_count = st.session_state.false_count
            nei_count = st.session_state.nei_count

            if true_count > 0 and false_count == 0:
                reliability = '<span style="color: darkgreen; font-weight: bold;">Highly Reliable</span>'
            elif true_count > false_count:
                reliability = '<span style="color: lightgreen; font-weight: bold;">Fairly Reliable</span>'
            elif true_count == 0:
                reliability = '<span style="color: darkred; font-weight: bold;">Strongly Considered Unreliable</span>'
            elif false_count > true_count:
                reliability = '<span style="color: lightcoral; font-weight: bold;">Unlikely to be Reliable</span>'
            elif (true_count == false_count) or (nei_count > true_count and nei_count > false_count and true_count != 0 and false_count != 0):
                reliability = '<span style="color: yellow; font-weight: bold;">NEI</span>'
            else:
                reliability = '<span style="color: black; font-weight: bold;">Completely Reliable</span>'

            st.markdown(f"The page is considered {reliability} because it contains {true_count} true claims, {false_count} false claims, and {nei_count} claims with not enough information.", unsafe_allow_html=True)

            with st.popover("ℹ️ Understanding the Truthfulness Ratings"):
                st.markdown("""
                The reliability of the page is determined based on the number of true and false claims extracted from the page.
                - If the page contains only true claims, it is considered **Highly Reliable**.
                - If the page has more true claims than false claims, it is considered **Fairly Reliable**.
                 -If the page has more false claims than true claims, it is considered **Unlikely to be Reliable**.
                - If the page contains only false claims, it is considered **Strongly Considered Unreliable**.
                - If the page has an equal number of true and false claims, it is considered **NEI**.
                """)

        with st2:
            st_echarts(
            options=options, height="500px",
            )


#### Video check PAGE ####
elif page == "Video check":
    st.subheader("Video claim check")
    st.caption("✨ Upload a video to fact-check and hit the button to see the results! πŸ”")

    video = st.file_uploader("Choose a video...", type=["mp4"])
    video_box, text_box = st.columns([0.6, 0.4])
    if video is not None:
        with video_box:
            with st.expander("▢️ See uploaded video", expanded=False):
                st.video(video)

    if st.button("✨ Fact Check") and video is not None:
        with st.spinner('πŸŽ₯πŸ”„ Processing video...'):
            # Save the video to a temporary file
            with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video:
                temp_video.write(video.read())
                temp_video_path = temp_video.name
            
            # Extract the audio from the video
            temp_audio_path = tempfile.NamedTemporaryFile(delete=False, suffix=".wav").name
            ffmpeg.input(temp_video_path).output(temp_audio_path, acodec="pcm_s16le", ar=16000, ac=1).run(overwrite_output=True)
            
            # Transcribe the audio
            model1 = whisper.load_model("small")
            result = model1.transcribe(temp_audio_path)
            
            # Extract the final text
            transcribed_text = result["text"]
            with text_box:
                with st.expander("πŸ“ Transcribed Text", expanded=False):
                    st.caption("πŸ” Here is the transcribed text from the uploaded video:")
                    container = st.container(height=322)
                    container.write(transcribed_text)

        st.session_state.true_count = 0
        st.session_state.false_count = 0
        st.session_state.nei_count = 0

        with st.spinner('πŸŒπŸ” Extracting claims from video...'):
            try:
                # Retrieve the claims from the video
                prompt_template = claim_detection_template(transcribed_text)

                # Call the API
                completion = client.chat.completions.create(
                    model="meta/llama-3.1-405b-instruct",
                    messages=[{"role": "user", "content": prompt_template}],
                    temperature=0.1,
                    top_p=0.7,
                    max_tokens=1024,
                    stream=True
                )

                # Collect the response
                answer = ""
                for chunk in completion:
                    if chunk.choices[0].delta.content:
                        answer += chunk.choices[0].delta.content

                # Debug: Check the answer
                if debug:
                    print(f"{answer}")

            except Exception as e:
                print(f"Error {e}")

            claims_dict = extract_and_split_claims(answer)

        # Display the extracted claims
        st.markdown("### **Claims Extracted**")
        st.caption("πŸ” Here are the health-related claims extracted from the video:")
        cols = st.columns(3)
        for i, (claim_key, claim_text) in enumerate(claims_dict.items(), 1):
            col = cols[(i - 1) % 3]
            with col.expander(f"Claim {i} πŸ“", expanded=True):
                st.write(claim_text)

        # Display the results for the extracted claims
        st.markdown("### **Results**")
        st.caption("πŸ” Here are the results for the extracted claims:")
        for claim_key, claim_text in claims_dict.items():
            st.session_state.claim = claim_text
            if st.session_state.claim:
                top_abstracts = retrieve_top_abstracts(st.session_state.claim, model, index, pmids, data, top_k=5)
                st.session_state.top_abstracts = top_abstracts  # Salva i risultati

            with st.expander(f"βœ”οΈ **Results for {claim_key}**", expanded=True):
                for i, (abstract, pmid, distance) in enumerate(st.session_state.top_abstracts, 1):
                    pubmed_url = f"https://pubmed.ncbi.nlm.nih.gov/{pmid}/"
                    globals()[f"abstract_{i}"] = abstract
                    globals()[f"reference_{i}"] = pubmed_url
                    globals()[f"distance_{i}"] = distance

                with st.spinner('πŸ” We are checking...'):
                    try:
                        # Retrieve the question from the DataFrame
                        query = st.session_state.claim

                        # Generate the reasoning template
                        prompt_template = llm_reasoning_template(query)

                        # Add the abstracts to the prompt
                        for i in range(1, len(st.session_state.top_abstracts)):
                            prompt_template += f"{globals()[f'abstract_{i}']} ; "
                        prompt_template += f"{globals()[f'abstract_{i+1}']} [/INST]"

                        # Call the API
                        completion = client.chat.completions.create(
                            model="meta/llama-3.1-405b-instruct",
                            messages=[{"role": "user", "content": prompt_template}],
                            temperature=0.1,
                            top_p=0.7,
                            max_tokens=1024,
                            stream=True
                        )

                        # Collect the response
                        answer = ""
                        for chunk in completion:
                            if chunk.choices[0].delta.content:
                                answer += chunk.choices[0].delta.content

                        # Debug: Check the answer
                        if debug:
                            print(f"{answer}")

                    except Exception as e:
                            st.write(f"Error processing index: {e}")

                with st.spinner('πŸ€”πŸ’¬ Justifying the check...'):
                    # Perform parsing and separate variables
                    zeroshot_classifier = pipeline(
                        "zero-shot-classification", model="MoritzLaurer/deberta-v3-large-zeroshot-v1.1-all-33"
                    )
                    first_label, justification, supporting, refusing, notes = parse_response(answer)
                    
                with st.spinner('πŸ•΅οΈβ€β™‚οΈπŸ“œ We are finding evidence...'):
                    # Generate the justification for the claim
                    result = generate_justification(st.session_state.claim, justification)
                    predicted_label, score_label = extract_label_and_score(result)

                    # Update the counts based on the predicted label
                    if predicted_label == "True":
                        color = f"rgba(0, 204, 0, {score_label})"  # Green
                        st.session_state.true_count += 1
                    elif predicted_label == "False":
                        color = f"rgba(204, 0, 0, {score_label})"  # Red
                        st.session_state.false_count += 1
                    elif predicted_label == "NEI":
                        color = f"rgba(255, 255, 0, {score_label})"  # Yellow
                        st.session_state.nei_count += 1
                    else:
                        color = "black"  # Default color

                    confidence = f"{score_label * 100:.2f}%" 
                    st.caption(f"πŸ“ The Claim: {st.session_state.claim}")
                    st.markdown(
                        f"**Prediction of claim:** Most likely <span style='color: {color}; font-weight: bold;'>{predicted_label}</span> with a confidence of <span style='color: {color}; font-weight: bold;'>{confidence}</span>",
                        unsafe_allow_html=True
                    )
                    
                    st.markdown("### **Justification**")
                    st.markdown(f'<p> {justification}</p>', unsafe_allow_html=True)
                    
                    abstracts = {}
                    for i in range(1, len(st.session_state.top_abstracts) + 1):
                        abstracts[f"abstract_{i}"] = globals()[f"abstract_{i}"]

                    pattern = r'"\s*(.*?)\s*"\s*\(abstract_(\d+)\)'

                    supporting_texts = []
                    for item in supporting:
                        try:
                            supporting_texts.append(item["text"])
                        except (TypeError, KeyError):
                            continue
                    supporting = clean_phrases(supporting_texts, pattern)

                    refusing_text = []
                    for item in refusing:
                        try:
                            refusing_text.append(item["text"])
                        except (TypeError, KeyError):
                            continue
                    refusing = clean_phrases(refusing_text, pattern)
                    
                    processed_abstracts = {}
                    for abstract_name, abstract_text in abstracts.items():
                        # Highlight supporting phrases in green
                        supporting_matches = [phrase for phrase in supporting if phrase["abstract"] == abstract_name]
                        abstract_text = highlight_phrases(abstract_text, supporting_matches, "lightgreen", predicted_label)
                        
                        # Highlight refusing phrases in red
                        refusing_matches = [phrase for phrase in refusing if phrase["abstract"] == abstract_name]
                        abstract_text = highlight_phrases(abstract_text, refusing_matches, "red", predicted_label)
                        
                        if supporting_matches:
                            # Add the reference if a corresponding variable exists
                            reference_variable = f"reference_{abstract_name.split('_')[1]}"
                            if reference_variable in globals():
                                reference_value = globals()[reference_variable]
                                abstract_text += f"<br><br><strong>πŸ”— Reference:</strong> {reference_value}"
                            
                            # Add the processed abstract
                            processed_abstracts[abstract_name] = abstract_text

                    # Iterate over the processed abstracts and remove duplicates
                    seen_contents = set()  # Set to track already seen contents
                    evidence_counter = 1
                    
                    # Display the results of the processed abstracts with numbered expanders
                    st.markdown("### **Scientific Evidence**")
                    
                    # Add a legend for the colors
                    legend_html = """
                        <div style="display: flex; flex-direction: column; align-items: flex-start;">
                        <div style="display: flex; align-items: center; margin-bottom: 5px;">
                        <div style="width: 20px; height: 20px; background-color: lightgreen; margin-right: 10px; border-radius: 5px;"></div>
                        <div>Positive Evidence</div>
                        </div>
                        <div style="display: flex; align-items: center; margin-bottom: 5px;">
                        <div style="width: 20px; height: 20px; background-color: red; margin-right: 10px; border-radius: 5px;"></div>
                        <div>Negative Evidence</div>
                        </div>
                        <div style="display: flex; align-items: center; margin-bottom: 5px;">
                        <div style="width: 20px; height: 20px; background-color: yellow; margin-right: 10px; border-radius: 5px;"></div>
                        <div>Dubious Evidence</div>
                        </div>
                        </div>
                    """
                    col1, col2 = st.columns([0.8, 0.2])
                    
                    with col1:
                        if processed_abstracts:
                            tabs = st.tabs([f"Scientific Evidence {i}" for i in range(1, len(processed_abstracts) + 1)])
                            for tab, (name, content) in zip(tabs, processed_abstracts.items()):
                                if content not in seen_contents:  # Check for duplicates
                                    seen_contents.add(content)
                                    with tab:
                                        # Switch colors if the label is "False"
                                        if predicted_label.lower() == "false":
                                            content = content.replace("background-color: lightgreen", "background-color: tempcolor")
                                            content = content.replace("background-color: red", "background-color: lightgreen")
                                            content = content.replace("background-color: tempcolor", "background-color: red")
                                        
                                        # Use `st.write` to display HTML directly
                                        st.write(content, unsafe_allow_html=True)
                        else:
                            st.markdown("No relevant Scientific Evidence found")
                    
                    with col2:
                        st.caption("Legend")
                        st.markdown(legend_html, unsafe_allow_html=True)

        st.markdown("### **Video Summary**")
        st.caption("πŸ“Š Here is a summary of the results for the extracted claims:")

        # Labels and Colors
        labels = ['True', 'False', 'NEI']
        colors = ['green', 'red', 'yellow']

        # Sizes of the pie chart
        sizes = [
            st.session_state.true_count,
            st.session_state.false_count,
            st.session_state.nei_count
        ]

        # Configure the Pie Chart Options
        options = {
            "tooltip": {"trigger": "item"},
            "legend": {"top": "5%", "left": "center"},
            "series": [
            {
                "name": "Document Status",
                "type": "pie",
                "radius": ["40%", "70%"],
                "avoidLabelOverlap": False,
                "itemStyle": {
                "borderRadius": 10,
                "borderColor": "#fff",
                "borderWidth": 2,
                },
                "label": {"show": True, "position": "center"},
                "emphasis": {
                "label": {"show": True, "fontSize": "20", "fontWeight": "bold"}
                },
                "labelLine": {"show": False},
                "data": [
                {"value": sizes[0], "name": labels[0], "itemStyle": {"color": colors[0]}},
                {"value": sizes[1], "name": labels[1], "itemStyle": {"color": colors[1]}},
                {"value": sizes[2], "name": labels[2], "itemStyle": {"color": colors[2]}},
                ],
            }
            ],
        }

        # Display the Pie Chart
        st1, st2 = st.columns([0.6, 0.4])

        with st1:
            st.markdown("#### The Video is :")
            true_count = st.session_state.true_count
            false_count = st.session_state.false_count
            nei_count = st.session_state.nei_count

            if true_count > 0 and false_count == 0:
                reliability = '<span style="color: darkgreen; font-weight: bold;">Highly Reliable</span>'
            elif true_count > false_count:
                reliability = '<span style="color: lightgreen; font-weight: bold;">Fairly Reliable</span>'
            elif true_count == 0:
                reliability = '<span style="color: darkred; font-weight: bold;">Strongly Considered Unreliable</span>'
            elif false_count > true_count:
                reliability = '<span style="color: lightcoral; font-weight: bold;">Unlikely to be Reliable</span>'
            elif (true_count == false_count) or (nei_count > true_count and nei_count > false_count and true_count != 0 and false_count != 0):
                reliability = '<span style="color: yellow; font-weight: bold;">NEI</span>'
            else:
                reliability = '<span style="color: black; font-weight: bold;">Completely Reliable</span>'

            st.markdown(f"The video is considered {reliability} because it contains {true_count} true claims, {false_count} false claims, and {nei_count} claims with not enough information.", unsafe_allow_html=True)
        
            with st.popover("ℹ️ Understanding the Truthfulness Ratings"):
                st.markdown("""
                The reliability of the video is determined based on the number of true and false claims extracted from the video.
                - If the video contains only true claims, it is considered **Highly Reliable**.
                - If the video has more true claims than false claims, it is considered **Fairly Reliable**.
                - If the video has more false claims than true claims, it is considered **Unlikely to be Reliable**.
                - If the video contains only false claims, it is considered **Strongly Considered Unreliable**.
                - If the video has an equal number of true and false claims, it is considered **NEI**.
                """)

        with st2:
            st_echarts(
            options=options, height="500px",
            )