givyboy's picture
simple edit
ef9b237 verified
raw
history blame
6.02 kB
# import gradio as gr
# import torch
# import transformers
# from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
# from peft import PeftConfig, PeftModel
# import warnings
# from threading import Thread
# warnings.filterwarnings("ignore")
# PEFT_MODEL = "givyboy/phi-2-finetuned-mental-health-conversational"
# SYSTEM_PROMPT = """Answer the following question truthfully.
# If you don't know the answer, respond 'Sorry, I don't know the answer to this question.'.
# If the question is too complex, respond 'Kindly, consult a psychiatrist for further queries.'."""
# USER_PROMPT = lambda x: f"""<HUMAN>: {x}\n<ASSISTANT>: """
# ADD_RESPONSE = lambda x, y: f"""<HUMAN>: {x}\n<ASSISTANT>: {y}"""
# DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# bnb_config = BitsAndBytesConfig(
# load_in_4bit=True,
# bnb_4bit_quant_type="nf4",
# bnb_4bit_use_double_quant=True,
# bnb_4bit_compute_dtype=torch.float16,
# )
# config = PeftConfig.from_pretrained(PEFT_MODEL)
# peft_base_model = AutoModelForCausalLM.from_pretrained(
# config.base_model_name_or_path,
# return_dict=True,
# # quantization_config=bnb_config,
# device_map="auto",
# trust_remote_code=True,
# offload_folder="offload/",
# offload_state_dict=True,
# )
# peft_model = PeftModel.from_pretrained(
# peft_base_model,
# PEFT_MODEL,
# offload_folder="offload/",
# offload_state_dict=True,
# )
# peft_model = peft_model.to(DEVICE)
# peft_tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# peft_tokenizer.pad_token = peft_tokenizer.eos_token
# pipeline = transformers.pipeline(
# "text-generation",
# model=peft_model,
# tokenizer=peft_tokenizer,
# torch_dtype=torch.bfloat16,
# trust_remote_code=True,
# device_map="auto",
# )
# # def format_message(message: str, history: list[str], memory_limit: int = 3) -> str:
# # if len(history) > memory_limit:
# # history = history[-memory_limit:]
# # if len(history) == 0:
# # return f"{SYSTEM_PROMPT}\n{USER_PROMPT(message)}"
# # formatted_message = f"{SYSTEM_PROMPT}\n{ADD_RESPONSE(history[0][0], history[0][1])}"
# # for msg, ans in history[1:]:
# # formatted_message += f"\n{ADD_RESPONSE(msg, ans)}"
# # formatted_message += f"\n{USER_PROMPT(message)}"
# # return formatted_message
# # def get_model_response(message: str, history: list[str]) -> str:
# # formatted_message = format_message(message, history)
# # sequences = pipeline(
# # formatted_message,
# # do_sample=True,
# # top_k=10,
# # num_return_sequences=1,
# # eos_token_id=peft_tokenizer.eos_token_id,
# # max_length=600,
# # )[0]
# # print(sequences["generated_text"])
# # output = sequences["generated_text"].split("<ASSISTANT>:")[-1].strip()
# # # print(f"Response: {output}")
# # return output
# start_message = ""
# def user(message, history):
# # Append the user's message to the conversation history
# return "", history + [[message, ""]]
# def chat(message, history):
# chat_history = []
# for item in history:
# chat_history.append({"role": "user", "content": item[0]})
# if item[1] is not None:
# chat_history.append({"role": "assistant", "content": item[1]})
# message = f"{SYSTEM_PROMPT}\n{USER_PROMPT(message)}"
# chat_history.append({"role": "user", "content": message})
# messages = peft_tokenizer.apply_chat_template(chat_history, tokenize=False, add_generation_prompt=True)
# # Tokenize the messages string
# model_inputs = peft_tokenizer([messages], return_tensors="pt").to(DEVICE)
# streamer = transformers.TextIteratorStreamer(
# peft_tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
# )
# generate_kwargs = dict(
# model_inputs,
# streamer=streamer,
# max_new_tokens=1024,
# do_sample=True,
# top_p=0.95,
# top_k=1000,
# temperature=0.75,
# num_beams=1,
# )
# t = Thread(target=peft_model.generate, kwargs=generate_kwargs)
# t.start()
# # Initialize an empty string to store the generated text
# partial_text = ""
# for new_text in streamer:
# # print(new_text)
# partial_text += new_text
# # Yield an empty string to cleanup the message textbox and the updated conversation history
# yield partial_text
# chat = gr.ChatInterface(fn=chat, title="Mental Health Chatbot - by Jayda Hunte")
# chat.launch(share=True)
import os
from openai import OpenAI
from dotenv import load_dotenv
import gradio as gr
load_dotenv()
API_KEY = os.getenv("OPENAI_API_KEY")
openai = OpenAI(api_key=API_KEY)
create_msg = lambda x, y: {"role": x, "content": y}
SYSTEM_PROMPT = create_msg(
"system",
"""You are a helpful mental health chatbot, please answer with care. If you don't know the answer, respond 'Sorry, I don't know the answer to this question.'. If the question is too complex, respond 'Kindly, consult a psychiatrist for further queries.'.""".strip(),
)
def predict(message, history):
history_openai_format = []
history_openai_format.append(SYSTEM_PROMPT)
for human, assistant in history:
history_openai_format.append({"role": "user", "content": human})
history_openai_format.append({"role": "assistant", "content": assistant})
history_openai_format.append({"role": "user", "content": message})
response = openai.chat.completions.create(
model="ft:gpt-3.5-turbo-0613:personal::8kBTG8eh", messages=history_openai_format, temperature=0.35, stream=True
)
partial_message = ""
for chunk in response:
if chunk.choices[0].delta.content is not None:
partial_message = partial_message + chunk.choices[0].delta.content
yield partial_message
gr.ChatInterface(fn=predict, title="Mental Health Chatbot").launch()