Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,80 +1,105 @@
|
|
1 |
-
# You can find this code for Chainlit python streaming here (https://docs.chainlit.io/concepts/streaming/python)
|
2 |
-
|
3 |
-
# OpenAI Chat completion
|
4 |
import os
|
5 |
-
from
|
6 |
-
import chainlit as cl # importing chainlit for our app
|
7 |
-
from chainlit.prompt import Prompt, PromptMessage # importing prompt tools
|
8 |
-
from chainlit.playground.providers import ChatOpenAI # importing ChatOpenAI tools
|
9 |
-
from dotenv import load_dotenv
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
"""
|
16 |
|
17 |
-
|
18 |
-
Think through your response step by step.
|
19 |
-
"""
|
20 |
|
|
|
21 |
|
22 |
-
|
23 |
-
async def start_chat():
|
24 |
-
settings = {
|
25 |
-
"model": "gpt-3.5-turbo",
|
26 |
-
"temperature": 0,
|
27 |
-
"max_tokens": 500,
|
28 |
-
"top_p": 1,
|
29 |
-
"frequency_penalty": 0,
|
30 |
-
"presence_penalty": 0,
|
31 |
-
}
|
32 |
|
33 |
-
cl.user_session.set("settings", settings)
|
34 |
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
)
|
61 |
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
|
|
|
|
|
65 |
|
66 |
-
|
67 |
-
async for stream_resp in await client.chat.completions.create(
|
68 |
-
messages=[m.to_openai() for m in prompt.messages], stream=True, **settings
|
69 |
-
):
|
70 |
-
token = stream_resp.choices[0].delta.content
|
71 |
-
if not token:
|
72 |
-
token = ""
|
73 |
-
await msg.stream_token(token)
|
74 |
|
75 |
-
# Update the prompt object with the completion
|
76 |
-
prompt.completion = msg.content
|
77 |
-
msg.prompt = prompt
|
78 |
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
from typing import List
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain.vectorstores import Chroma
|
7 |
+
from langchain.chains import (
|
8 |
+
ConversationalRetrievalChain,
|
9 |
+
)
|
10 |
+
from langchain.chat_models import ChatOpenAI
|
11 |
|
12 |
+
from langchain.docstore.document import Document
|
13 |
+
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
|
|
|
14 |
|
15 |
+
import chainlit as cl
|
|
|
|
|
16 |
|
17 |
+
os.environ["OPENAI_API_KEY"] = "OPENAI_API_KEY"
|
18 |
|
19 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
|
|
21 |
|
22 |
+
@cl.on_chat_start
|
23 |
+
async def on_chat_start():
|
24 |
+
files = None
|
25 |
|
26 |
+
# Wait for the user to upload a file
|
27 |
+
while files == None:
|
28 |
+
files = await cl.AskFileMessage(
|
29 |
+
content="Please upload a text file to begin!",
|
30 |
+
accept=["text/plain"],
|
31 |
+
max_size_mb=20,
|
32 |
+
timeout=180,
|
33 |
+
).send()
|
34 |
+
|
35 |
+
file = files[0]
|
36 |
+
|
37 |
+
msg = cl.Message(content=f"Processing `{file.name}`...")
|
38 |
+
await msg.send()
|
39 |
+
|
40 |
+
with open(file.path, "r", encoding="utf-8") as f:
|
41 |
+
text = f.read()
|
42 |
+
|
43 |
+
# Split the text into chunks
|
44 |
+
texts = text_splitter.split_text(text)
|
45 |
+
|
46 |
+
# Create a metadata for each chunk
|
47 |
+
metadatas = [{"source": f"{i}-pl"} for i in range(len(texts))]
|
48 |
+
|
49 |
+
# Create a Chroma vector store
|
50 |
+
embeddings = OpenAIEmbeddings()
|
51 |
+
docsearch = await cl.make_async(Chroma.from_texts)(
|
52 |
+
texts, embeddings, metadatas=metadatas
|
53 |
+
)
|
54 |
+
|
55 |
+
message_history = ChatMessageHistory()
|
56 |
+
|
57 |
+
memory = ConversationBufferMemory(
|
58 |
+
memory_key="chat_history",
|
59 |
+
output_key="answer",
|
60 |
+
chat_memory=message_history,
|
61 |
+
return_messages=True,
|
62 |
)
|
63 |
|
64 |
+
# Create a chain that uses the Chroma vector store
|
65 |
+
chain = ConversationalRetrievalChain.from_llm(
|
66 |
+
ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0, streaming=True),
|
67 |
+
chain_type="stuff",
|
68 |
+
retriever=docsearch.as_retriever(),
|
69 |
+
memory=memory,
|
70 |
+
return_source_documents=True,
|
71 |
+
)
|
72 |
|
73 |
+
# Let the user know that the system is ready
|
74 |
+
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
|
75 |
+
await msg.update()
|
76 |
|
77 |
+
cl.user_session.set("chain", chain)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
|
|
|
|
|
|
79 |
|
80 |
+
@cl.on_message
|
81 |
+
async def main(message: cl.Message):
|
82 |
+
chain = cl.user_session.get("chain") # type: ConversationalRetrievalChain
|
83 |
+
cb = cl.AsyncLangchainCallbackHandler()
|
84 |
+
|
85 |
+
res = await chain.acall(message.content, callbacks=[cb])
|
86 |
+
answer = res["answer"]
|
87 |
+
source_documents = res["source_documents"] # type: List[Document]
|
88 |
+
|
89 |
+
text_elements = [] # type: List[cl.Text]
|
90 |
+
|
91 |
+
if source_documents:
|
92 |
+
for source_idx, source_doc in enumerate(source_documents):
|
93 |
+
source_name = f"source_{source_idx}"
|
94 |
+
# Create the text element referenced in the message
|
95 |
+
text_elements.append(
|
96 |
+
cl.Text(content=source_doc.page_content, name=source_name, display="side")
|
97 |
+
)
|
98 |
+
source_names = [text_el.name for text_el in text_elements]
|
99 |
+
|
100 |
+
if source_names:
|
101 |
+
answer += f"\nSources: {', '.join(source_names)}"
|
102 |
+
else:
|
103 |
+
answer += "\nNo sources found"
|
104 |
+
|
105 |
+
await cl.Message(content=answer, elements=text_elements).send()
|