Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,16 @@
|
|
1 |
import os
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
from chainlit.playground.providers import ChatOpenAI # importing ChatOpenAI tools
|
6 |
-
from dotenv import load_dotenv
|
7 |
-
import asyncio
|
8 |
-
import textract # importing textract for document processing
|
9 |
|
10 |
# Load OpenAI API key from environment variables
|
11 |
api_key = os.getenv("OPENAI_API_KEY")
|
12 |
|
13 |
-
# Templates for ChatOpenAI interaction
|
14 |
-
system_template = """You are a helpful assistant who always speaks in a pleasant tone and answers based on the provided document!
|
15 |
-
"""
|
16 |
-
|
17 |
-
user_template = """{input}
|
18 |
-
Use the document content to respond to the user query step by step.
|
19 |
-
"""
|
20 |
-
|
21 |
# Function to extract text from uploaded documents
|
22 |
-
async def extract_text_from_file(
|
23 |
-
|
24 |
-
return textract.process(file).decode('utf-8')
|
25 |
|
26 |
-
#
|
27 |
@cl.on_chat_start
|
28 |
async def start_chat():
|
29 |
settings = {
|
@@ -34,72 +21,51 @@ async def start_chat():
|
|
34 |
"frequency_penalty": 0,
|
35 |
"presence_penalty": 0,
|
36 |
}
|
37 |
-
|
38 |
cl.user_session.set("settings", settings)
|
39 |
|
40 |
-
# Welcome message with file upload option
|
41 |
await cl.Message(content="Welcome! Please upload a document to begin.").send()
|
42 |
|
43 |
-
#
|
44 |
-
@cl.
|
45 |
-
async def on_file_upload(files: list):
|
46 |
-
# Handle the uploaded files, assuming it's the first file
|
47 |
-
if files:
|
48 |
-
file = files[0]
|
49 |
-
file_content = await extract_text_from_file(file.path)
|
50 |
-
|
51 |
-
# Save document content in session for later use
|
52 |
-
cl.user_session.set("document_content", file_content)
|
53 |
-
|
54 |
-
# Inform the user that the document was successfully uploaded
|
55 |
-
await cl.Message(content=f"Document '{file.name}' uploaded successfully! You can now ask questions based on the document content.").send()
|
56 |
-
|
57 |
-
# Function to handle user messages
|
58 |
-
@cl.on_message
|
59 |
async def main(message: cl.Message):
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
if not document_content:
|
64 |
-
# If no document is uploaded, prompt the user to upload one
|
65 |
-
await cl.Message(content="Please upload a document first.").send()
|
66 |
-
return
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
PromptMessage(
|
74 |
-
role="system",
|
75 |
-
template=system_template,
|
76 |
-
formatted=system_template,
|
77 |
-
),
|
78 |
-
PromptMessage(
|
79 |
-
role="user",
|
80 |
-
template=user_template,
|
81 |
-
formatted=user_template.format(input=message.content),
|
82 |
-
),
|
83 |
-
],
|
84 |
-
inputs={"input": message.content, "document": document_content},
|
85 |
-
settings=settings,
|
86 |
-
)
|
87 |
-
|
88 |
-
msg = cl.Message(content="")
|
89 |
-
|
90 |
-
# Call OpenAI
|
91 |
-
async for stream_resp in await client.chat.completions.create(
|
92 |
-
messages=[m.to_openai() for m in prompt.messages], stream=True, **settings
|
93 |
-
):
|
94 |
-
token = stream_resp.choices[0].delta.content
|
95 |
-
if not token:
|
96 |
-
token = ""
|
97 |
-
await msg.stream_token(token)
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
102 |
|
103 |
-
|
104 |
-
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import chainlit as cl # Chainlit import
|
3 |
+
from openai import AsyncOpenAI # OpenAI API
|
4 |
+
import textract # For extracting text from documents
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Load OpenAI API key from environment variables
|
7 |
api_key = os.getenv("OPENAI_API_KEY")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
# Function to extract text from uploaded documents
|
10 |
+
async def extract_text_from_file(file_path):
|
11 |
+
return textract.process(file_path).decode('utf-8')
|
|
|
12 |
|
13 |
+
# Chat initialization
|
14 |
@cl.on_chat_start
|
15 |
async def start_chat():
|
16 |
settings = {
|
|
|
21 |
"frequency_penalty": 0,
|
22 |
"presence_penalty": 0,
|
23 |
}
|
|
|
24 |
cl.user_session.set("settings", settings)
|
25 |
|
|
|
26 |
await cl.Message(content="Welcome! Please upload a document to begin.").send()
|
27 |
|
28 |
+
# This handles incoming files manually (instead of on_file_upload)
|
29 |
+
@cl.on_message
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
async def main(message: cl.Message):
|
31 |
+
if message.attachments: # Check if the message contains file attachments
|
32 |
+
uploaded_file = message.attachments[0]
|
33 |
+
file_path = uploaded_file['path']
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
# Extract text from the uploaded document
|
36 |
+
file_content = await extract_text_from_file(file_path)
|
37 |
+
|
38 |
+
# Store document content in user session
|
39 |
+
cl.user_session.set("document_content", file_content)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
await cl.Message(content=f"Document '{uploaded_file['name']}' uploaded successfully! You can now ask questions based on the document content.").send()
|
42 |
+
else:
|
43 |
+
document_content = cl.user_session.get("document_content", "")
|
44 |
+
|
45 |
+
if not document_content:
|
46 |
+
await cl.Message(content="Please upload a document first.").send()
|
47 |
+
return
|
48 |
|
49 |
+
settings = cl.user_session.get("settings")
|
50 |
+
client = AsyncOpenAI()
|
51 |
|
52 |
+
# Create the prompt for OpenAI based on user message and document content
|
53 |
+
prompt = f"Document Content: {document_content}\n\nUser Query: {message.content}"
|
54 |
+
|
55 |
+
msg = cl.Message(content="")
|
56 |
+
|
57 |
+
# Send prompt to OpenAI and stream response
|
58 |
+
async for stream_resp in await client.chat.completions.create(
|
59 |
+
model=settings["model"],
|
60 |
+
messages=[{"role": "system", "content": "Answer based on the provided document."},
|
61 |
+
{"role": "user", "content": prompt}],
|
62 |
+
stream=True,
|
63 |
+
**settings,
|
64 |
+
):
|
65 |
+
token = stream_resp.choices[0].delta.content
|
66 |
+
if not token:
|
67 |
+
token = ""
|
68 |
+
await msg.stream_token(token)
|
69 |
+
|
70 |
+
# Send final response
|
71 |
+
await msg.send()
|