gizemsarsinlar's picture
Update app.py
f7fafa9 verified
raw
history blame
7.35 kB
from langchain_core.runnables import RunnableLambda
from langchain_core.runnables.passthrough import RunnableAssign
from langchain_nvidia_ai_endpoints import ChatNVIDIA, NVIDIAEmbeddings
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
import gradio as gr
from functools import partial
from operator import itemgetter
from faiss import IndexFlatL2
from langchain_community.docstore.in_memory import InMemoryDocstore
import json
from langchain_nvidia_ai_endpoints import ChatNVIDIA, NVIDIAEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import ArxivLoader
from langchain_community.document_transformers import LongContextReorder
from langchain_community.document_loaders import PyPDFLoader
import os
api_key = os.getenv("NVIDIA_API_KEY")
# # Mevcut modelleri kontrol edin
# available_embeddings = NVIDIAEmbeddings.get_available_models(api_key=api_key)
# print("Available NVIDIA Embedding Models:", available_embeddings)
# available_llms = ChatNVIDIA.get_available_models(api_key=api_key)
# print("Available NVIDIA Language Models:", available_llms)
# NVIDIAEmbeddings.get_available_models()
embedder = NVIDIAEmbeddings(model="NV-Embed-QA", api_key=api_key, truncate="END")
# ChatNVIDIA.get_available_models()
instruct_llm = ChatNVIDIA(model="mistralai/mixtral-8x7b-instruct-v0.1", api_key=api_key)
embed_dims = len(embedder.embed_query("test"))
def default_FAISS():
'''Useful utility for making an empty FAISS vectorstore'''
return FAISS(
embedding_function=embedder,
index=IndexFlatL2(embed_dims),
docstore=InMemoryDocstore(),
index_to_docstore_id={},
normalize_L2=False
)
def aggregate_vstores(vectorstores):
## Initialize an empty FAISS Index and merge others into it
## We'll use default_faiss for simplicity, though it's tied to your embedder by reference
agg_vstore = default_FAISS()
for vstore in vectorstores:
agg_vstore.merge_from(vstore)
return agg_vstore
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000, chunk_overlap=100,
separators=["\n\n", "\n", ".", ";", ",", " "],
)
docs = [
ArxivLoader(query="1706.03762").load(), ## Attention Is All You Need Paper
ArxivLoader(query="1810.04805").load(), ## BERT Paper
ArxivLoader(query="2005.11401").load(), ## RAG Paper
ArxivLoader(query="2205.00445").load(), ## MRKL Paper
ArxivLoader(query="2310.06825").load(), ## Mistral Paper
ArxivLoader(query="2306.05685").load(), ## LLM-as-a-Judge
## Some longer papers
ArxivLoader(query="2210.03629").load(), ## ReAct Paper
ArxivLoader(query="2112.10752").load(), ## Latent Stable Diffusion Paper
ArxivLoader(query="2103.00020").load(), ## CLIP Paper
## TODO: Feel free to add more
]
## Cut the paper short if references is included.
## This is a standard string in papers.
for doc in docs:
content = json.dumps(doc[0].page_content)
if "References" in content:
doc[0].page_content = content[:content.index("References")]
## Split the documents and also filter out stubs (overly short chunks)
print("Chunking Documents")
docs_chunks = [text_splitter.split_documents(doc) for doc in docs]
docs_chunks = [[c for c in dchunks if len(c.page_content) > 200] for dchunks in docs_chunks]
## Make some custom Chunks to give big-picture details
doc_string = "Available Documents:"
doc_metadata = []
for chunks in docs_chunks:
metadata = getattr(chunks[0], 'metadata', {})
doc_string += "\n - " + metadata.get('Title')
doc_metadata += [str(metadata)]
extra_chunks = [doc_string] + doc_metadata
vecstores = [FAISS.from_texts(extra_chunks, embedder)]
vecstores += [FAISS.from_documents(doc_chunks, embedder) for doc_chunks in docs_chunks]
## Unintuitive optimization; merge_from seems to optimize constituent vector stores away
docstore = aggregate_vstores(vecstores)
print(f"Constructed aggregate docstore with {len(docstore.docstore._dict)} chunks")
convstore = default_FAISS()
# Fonksiyon tanımları
def long_reorder(chunks):
"""Belgeleri uzunluklarına göre yeniden sıralar."""
return sorted(chunks, key=lambda x: len(x.page_content), reverse=True)
def docs2str(docs):
"""Belgeleri string formatına dönüştürür."""
return "\n\n".join([doc.page_content for doc in docs])
def save_memory_and_get_output(d, vstore):
"""Accepts 'input'/'output' dictionary and saves to convstore"""
vstore.add_texts([
f"User previously responded with {d.get('input')}",
f"Agent previously responded with {d.get('output')}"
])
return d.get('output')
initial_msg = (
"Hello! I am a document chat agent here to help the user!"
f" I have access to the following documents: {doc_string}\n\nHow can I help you?"
)
chat_prompt = ChatPromptTemplate.from_messages([("system",
"You are a document chatbot. Help the user as they ask questions about documents."
" User messaged just asked: {input}\n\n"
" From this, we have retrieved the following potentially-useful info: "
" Conversation History Retrieval:\n{history}\n\n"
" Document Retrieval:\n{context}\n\n"
" (Answer only from retrieval. Only cite sources that are used. Make your response conversational.)"
), ('user', '{input}')])
def RPrint(preface=""):
"""Simple passthrough "prints, then returns" chain"""
def print_and_return(x, preface):
if preface: print(preface, end="")
return x
return RunnableLambda(partial(print_and_return, preface=preface))
retrieval_chain = (
{'input' : (lambda x: x)}
## TODO: Make sure to retrieve history & context from convstore & docstore, respectively.
## HINT: Our solution uses RunnableAssign, itemgetter, long_reorder, and docs2str
| RunnableAssign({'history' : itemgetter('input') | convstore.as_retriever() | long_reorder | docs2str})
| RunnableAssign({'context' : itemgetter('input') | docstore.as_retriever() | long_reorder | docs2str})
| RPrint()
)
stream_chain = chat_prompt| RPrint() | instruct_llm | StrOutputParser()
def chat_gen(message, history=[], return_buffer=True):
buffer = ""
## First perform the retrieval based on the input message
retrieval = retrieval_chain.invoke(message)
line_buffer = ""
## Then, stream the results of the stream_chain
for token in stream_chain.stream(retrieval):
buffer += token
## If you're using standard print, keep line from getting too long
yield buffer if return_buffer else token
## Lastly, save the chat exchange to the conversation memory buffer
save_memory_and_get_output({'input': message, 'output': buffer}, convstore)
# ## Start of Agent Event Loop
# test_question = "Tell me about RAG!" ## <- modify as desired
# ## Before you launch your gradio interface, make sure your thing works
# for response in chat_gen(test_question, return_buffer=False):
# print(response, end='')
chatbot = gr.Chatbot(value = [[None, initial_msg]])
demo = gr.ChatInterface(chat_gen, chatbot=chatbot).queue()
try:
demo.launch(debug=True, share=False, show_api=False)
demo.close()
except Exception as e:
demo.close()
print(e)
raise e