gizemsarsinlar commited on
Commit
72bc02d
·
verified ·
1 Parent(s): 1a6af13

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +66 -68
app.py CHANGED
@@ -1,69 +1,67 @@
1
- import gradio as gr
2
- import spaces
3
- from transformers import AutoModelForCausalLM, AutoProcessor
4
- import torch
5
- from PIL import Image
6
- import subprocess
7
- subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
8
-
9
- models = {
10
- "microsoft/Phi-3.5-vision-instruct": AutoModelForCausalLM.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval()
11
-
12
- }
13
-
14
- processors = {
15
- "microsoft/Phi-3.5-vision-instruct": AutoProcessor.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True)
16
- }
17
-
18
- DESCRIPTION = "[Phi-3.5-vision Demo](https://huggingface.co/microsoft/Phi-3.5-vision-instruct)"
19
-
20
- kwargs = {}
21
- kwargs['torch_dtype'] = torch.bfloat16
22
-
23
- user_prompt = '<|user|>\n'
24
- assistant_prompt = '<|assistant|>\n'
25
- prompt_suffix = "<|end|>\n"
26
-
27
- @spaces.GPU
28
- def run_example(image, text_input=None, model_id="microsoft/Phi-3.5-vision-instruct"):
29
- model = models[model_id]
30
- processor = processors[model_id]
31
-
32
- prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
33
- image = Image.fromarray(image).convert("RGB")
34
-
35
- inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
36
- generate_ids = model.generate(**inputs,
37
- max_new_tokens=1000,
38
- eos_token_id=processor.tokenizer.eos_token_id,
39
- )
40
- generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
41
- response = processor.batch_decode(generate_ids,
42
- skip_special_tokens=True,
43
- clean_up_tokenization_spaces=False)[0]
44
- return response
45
-
46
- css = """
47
- #output {
48
- height: 500px;
49
- overflow: auto;
50
- border: 1px solid #ccc;
51
- }
52
- """
53
-
54
- with gr.Blocks(css=css) as demo:
55
- gr.Markdown(DESCRIPTION)
56
- with gr.Tab(label="Phi-3.5 Input"):
57
- with gr.Row():
58
- with gr.Column():
59
- input_img = gr.Image(label="Input Picture")
60
- model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="microsoft/Phi-3.5-vision-instruct")
61
- text_input = gr.Textbox(label="Question")
62
- submit_btn = gr.Button(value="Submit")
63
- with gr.Column():
64
- output_text = gr.Textbox(label="Output Text")
65
-
66
- submit_btn.click(run_example, [input_img, text_input, model_selector], [output_text])
67
-
68
- demo.queue(api_open=False)
69
  demo.launch(debug=True, show_api=False)
 
1
+ import gradio as gr
2
+ import spaces
3
+ from transformers import AutoModelForCausalLM, AutoProcessor
4
+ import torch
5
+ from PIL import Image
6
+ import subprocess
7
+ subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
8
+
9
+ models = {
10
+ "microsoft/Phi-3.5-vision-instruct": AutoModelForCausalLM.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval()
11
+
12
+ }
13
+
14
+ processors = {
15
+ "microsoft/Phi-3.5-vision-instruct": AutoProcessor.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True)
16
+ }
17
+
18
+ kwargs = {}
19
+ kwargs['torch_dtype'] = torch.bfloat16
20
+
21
+ user_prompt = '<|user|>\n'
22
+ assistant_prompt = '<|assistant|>\n'
23
+ prompt_suffix = "<|end|>\n"
24
+
25
+ @spaces.GPU
26
+ def run_example(image, text_input=None, model_id="microsoft/Phi-3.5-vision-instruct"):
27
+ model = models[model_id]
28
+ processor = processors[model_id]
29
+
30
+ prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
31
+ image = Image.fromarray(image).convert("RGB")
32
+
33
+ inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
34
+ generate_ids = model.generate(**inputs,
35
+ max_new_tokens=1000,
36
+ eos_token_id=processor.tokenizer.eos_token_id,
37
+ )
38
+ generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
39
+ response = processor.batch_decode(generate_ids,
40
+ skip_special_tokens=True,
41
+ clean_up_tokenization_spaces=False)[0]
42
+ return response
43
+
44
+ css = """
45
+ #output {
46
+ height: 500px;
47
+ overflow: auto;
48
+ border: 1px solid #ccc;
49
+ }
50
+ """
51
+
52
+ with gr.Blocks(css=css) as demo:
53
+ gr.Markdown(DESCRIPTION)
54
+ with gr.Tab(label="Phi-3.5 Input"):
55
+ with gr.Row():
56
+ with gr.Column():
57
+ input_img = gr.Image(label="Input Picture")
58
+ model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="microsoft/Phi-3.5-vision-instruct")
59
+ text_input = gr.Textbox(label="Question")
60
+ submit_btn = gr.Button(value="Submit")
61
+ with gr.Column():
62
+ output_text = gr.Textbox(label="Output Text")
63
+
64
+ submit_btn.click(run_example, [input_img, text_input, model_selector], [output_text])
65
+
66
+ demo.queue(api_open=False)
 
 
67
  demo.launch(debug=True, show_api=False)