Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,151 +1,154 @@
|
|
1 |
-
from pathlib import Path
|
2 |
-
from typing import List, Dict, Tuple
|
3 |
-
import matplotlib.colors as mpl_colors
|
4 |
-
|
5 |
-
import pandas as pd
|
6 |
-
import seaborn as sns
|
7 |
-
import shinyswatch
|
8 |
-
|
9 |
-
from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui
|
10 |
-
|
11 |
-
sns.set_theme()
|
12 |
-
|
13 |
-
www_dir = Path(__file__).parent.resolve() / "www"
|
14 |
-
|
15 |
-
df = pd.read_csv(Path(__file__).parent / "penguins.csv", na_values="NA")
|
16 |
-
numeric_cols: List[str] = df.select_dtypes(include=["float64"]).columns.tolist()
|
17 |
-
species: List[str] = df["Species"].unique().tolist()
|
18 |
-
species.sort()
|
19 |
-
|
20 |
-
app_ui = ui.page_fillable(
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
)
|
53 |
-
|
54 |
-
|
55 |
-
def server(input: Inputs, output: Outputs, session: Session):
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
# "darkorange", "purple", "cyan4"
|
130 |
-
colors = [[255, 140, 0], [160, 32, 240], [0, 139, 139]]
|
131 |
-
colors = [(r / 255.0, g / 255.0, b / 255.0) for r, g, b in colors]
|
132 |
-
|
133 |
-
palette: Dict[str, Tuple[float, float, float]] = {
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
}
|
139 |
-
|
140 |
-
bg_palette = {}
|
141 |
-
# Use `sns.set_style("whitegrid")` to help find approx alpha value
|
142 |
-
for name, col in palette.items():
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
app = App(
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
)
|
|
|
|
|
|
|
|
1 |
+
# from pathlib import Path
|
2 |
+
# from typing import List, Dict, Tuple
|
3 |
+
# import matplotlib.colors as mpl_colors
|
4 |
+
|
5 |
+
# import pandas as pd
|
6 |
+
# import seaborn as sns
|
7 |
+
# import shinyswatch
|
8 |
+
|
9 |
+
# from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui
|
10 |
+
|
11 |
+
# sns.set_theme()
|
12 |
+
|
13 |
+
# www_dir = Path(__file__).parent.resolve() / "www"
|
14 |
+
|
15 |
+
# df = pd.read_csv(Path(__file__).parent / "penguins.csv", na_values="NA")
|
16 |
+
# numeric_cols: List[str] = df.select_dtypes(include=["float64"]).columns.tolist()
|
17 |
+
# species: List[str] = df["Species"].unique().tolist()
|
18 |
+
# species.sort()
|
19 |
+
|
20 |
+
# app_ui = ui.page_fillable(
|
21 |
+
# shinyswatch.theme.minty(),
|
22 |
+
# ui.layout_sidebar(
|
23 |
+
# ui.sidebar(
|
24 |
+
# # Artwork by @allison_horst
|
25 |
+
# ui.input_selectize(
|
26 |
+
# "xvar",
|
27 |
+
# "X variable",
|
28 |
+
# numeric_cols,
|
29 |
+
# selected="Bill Length (mm)",
|
30 |
+
# ),
|
31 |
+
# ui.input_selectize(
|
32 |
+
# "yvar",
|
33 |
+
# "Y variable",
|
34 |
+
# numeric_cols,
|
35 |
+
# selected="Bill Depth (mm)",
|
36 |
+
# ),
|
37 |
+
# ui.input_checkbox_group(
|
38 |
+
# "species", "Filter by species", species, selected=species
|
39 |
+
# ),
|
40 |
+
# ui.hr(),
|
41 |
+
# ui.input_switch("by_species", "Show species", value=True),
|
42 |
+
# ui.input_switch("show_margins", "Show marginal plots", value=True),
|
43 |
+
# ),
|
44 |
+
# ui.output_ui("value_boxes"),
|
45 |
+
# ui.output_plot("scatter", fill=True),
|
46 |
+
# ui.help_text(
|
47 |
+
# "Artwork by ",
|
48 |
+
# ui.a("@allison_horst", href="https://twitter.com/allison_horst"),
|
49 |
+
# class_="text-end",
|
50 |
+
# ),
|
51 |
+
# ),
|
52 |
+
# )
|
53 |
+
|
54 |
+
|
55 |
+
# def server(input: Inputs, output: Outputs, session: Session):
|
56 |
+
# @reactive.Calc
|
57 |
+
# def filtered_df() -> pd.DataFrame:
|
58 |
+
# """Returns a Pandas data frame that includes only the desired rows"""
|
59 |
+
|
60 |
+
# # This calculation "req"uires that at least one species is selected
|
61 |
+
# req(len(input.species()) > 0)
|
62 |
+
|
63 |
+
# # Filter the rows so we only include the desired species
|
64 |
+
# return df[df["Species"].isin(input.species())]
|
65 |
+
|
66 |
+
# @output
|
67 |
+
# @render.plot
|
68 |
+
# def scatter():
|
69 |
+
# """Generates a plot for Shiny to display to the user"""
|
70 |
+
|
71 |
+
# # The plotting function to use depends on whether margins are desired
|
72 |
+
# plotfunc = sns.jointplot if input.show_margins() else sns.scatterplot
|
73 |
+
|
74 |
+
# plotfunc(
|
75 |
+
# data=filtered_df(),
|
76 |
+
# x=input.xvar(),
|
77 |
+
# y=input.yvar(),
|
78 |
+
# palette=palette,
|
79 |
+
# hue="Species" if input.by_species() else None,
|
80 |
+
# hue_order=species,
|
81 |
+
# legend=False,
|
82 |
+
# )
|
83 |
+
|
84 |
+
# @output
|
85 |
+
# @render.ui
|
86 |
+
# def value_boxes():
|
87 |
+
# df = filtered_df()
|
88 |
+
|
89 |
+
# def penguin_value_box(title: str, count: int, bgcol: str, showcase_img: str):
|
90 |
+
# return ui.value_box(
|
91 |
+
# title,
|
92 |
+
# count,
|
93 |
+
# {"class_": "pt-1 pb-0"},
|
94 |
+
# showcase=ui.fill.as_fill_item(
|
95 |
+
# ui.tags.img(
|
96 |
+
# {"style": "object-fit:contain;"},
|
97 |
+
# src=showcase_img,
|
98 |
+
# )
|
99 |
+
# ),
|
100 |
+
# theme_color=None,
|
101 |
+
# style=f"background-color: {bgcol};",
|
102 |
+
# )
|
103 |
+
|
104 |
+
# if not input.by_species():
|
105 |
+
# return penguin_value_box(
|
106 |
+
# "Penguins",
|
107 |
+
# len(df.index),
|
108 |
+
# bg_palette["default"],
|
109 |
+
# # Artwork by @allison_horst
|
110 |
+
# showcase_img="penguins.png",
|
111 |
+
# )
|
112 |
+
|
113 |
+
# value_boxes = [
|
114 |
+
# penguin_value_box(
|
115 |
+
# name,
|
116 |
+
# len(df[df["Species"] == name]),
|
117 |
+
# bg_palette[name],
|
118 |
+
# # Artwork by @allison_horst
|
119 |
+
# showcase_img=f"{name}.png",
|
120 |
+
# )
|
121 |
+
# for name in species
|
122 |
+
# # Only include boxes for _selected_ species
|
123 |
+
# if name in input.species()
|
124 |
+
# ]
|
125 |
+
|
126 |
+
# return ui.layout_column_wrap(*value_boxes, width = 1 / len(value_boxes))
|
127 |
+
|
128 |
+
|
129 |
+
# # "darkorange", "purple", "cyan4"
|
130 |
+
# colors = [[255, 140, 0], [160, 32, 240], [0, 139, 139]]
|
131 |
+
# colors = [(r / 255.0, g / 255.0, b / 255.0) for r, g, b in colors]
|
132 |
+
|
133 |
+
# palette: Dict[str, Tuple[float, float, float]] = {
|
134 |
+
# "Adelie": colors[0],
|
135 |
+
# "Chinstrap": colors[1],
|
136 |
+
# "Gentoo": colors[2],
|
137 |
+
# "default": sns.color_palette()[0], # type: ignore
|
138 |
+
# }
|
139 |
+
|
140 |
+
# bg_palette = {}
|
141 |
+
# # Use `sns.set_style("whitegrid")` to help find approx alpha value
|
142 |
+
# for name, col in palette.items():
|
143 |
+
# # Adjusted n_colors until `axe` accessibility did not complain about color contrast
|
144 |
+
# bg_palette[name] = mpl_colors.to_hex(sns.light_palette(col, n_colors=7)[1]) # type: ignore
|
145 |
+
|
146 |
+
|
147 |
+
# app = App(
|
148 |
+
# app_ui,
|
149 |
+
# server,
|
150 |
+
# static_assets=str(www_dir),
|
151 |
+
# )
|
152 |
+
|
153 |
+
from data import get_data
|
154 |
+
get_data()
|