Delete index.html
Browse files- index.html +0 -43
index.html
DELETED
@@ -1,43 +0,0 @@
|
|
1 |
-
<h2>Usage</h2>
|
2 |
-
|
3 |
-
<p>You can load models using the Hugging Face Transformers library:</p>
|
4 |
-
|
5 |
-
<p style="background-color: gray">
|
6 |
-
from transformers import pipeline
|
7 |
-
|
8 |
-
pipe = pipeline("text-generation", model="nroggendorff/mayo")
|
9 |
-
|
10 |
-
question = "What color is the sky?"
|
11 |
-
conv = [{"role": "user", "content": question}]
|
12 |
-
|
13 |
-
response = pipe(conv, max_new_tokens=32)[0]['generated_text'][-1]['content']
|
14 |
-
print(response)
|
15 |
-
</p>
|
16 |
-
|
17 |
-
<p>To use models with quantization:</p>
|
18 |
-
|
19 |
-
<p style="background-color: gray">
|
20 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
21 |
-
import torch
|
22 |
-
|
23 |
-
bnb_config = BitsAndBytesConfig(
|
24 |
-
load_in_4bit=True,
|
25 |
-
bnb_4bit_use_double_quant=True,
|
26 |
-
bnb_4bit_quant_type="nf4",
|
27 |
-
bnb_4bit_compute_dtype=torch.bfloat16
|
28 |
-
)
|
29 |
-
|
30 |
-
model_id = "nroggendorff/mayo"
|
31 |
-
|
32 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
33 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config)
|
34 |
-
|
35 |
-
question = "What color is the sky?"
|
36 |
-
prompt = tokenizer.apply_chat_template([{"role": "user", "content": question}], tokenize=False)
|
37 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
38 |
-
|
39 |
-
outputs = model.generate(**inputs, max_new_tokens=32)
|
40 |
-
|
41 |
-
generated_text = tokenizer.batch_decode(outputs)[0]
|
42 |
-
print(generated_text)
|
43 |
-
</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|