Spaces:
Sleeping
Sleeping
glitchbench
commited on
Commit
•
da7ea76
1
Parent(s):
cbd4a8c
Upload 2 files
Browse files- app.py +69 -0
- raw_outputs.pkl +3 -0
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
|
5 |
+
def load_and_process_data(file_path):
|
6 |
+
# Load the leaderboard data
|
7 |
+
df = pd.read_pickle(file_path)
|
8 |
+
|
9 |
+
# Group by 'lmm' and 'question' to calculate mean accuracy
|
10 |
+
accuracy_df = (
|
11 |
+
df.groupby(["lmm", "question"])["accepted_by_judge"].mean().reset_index()
|
12 |
+
)
|
13 |
+
accuracy_df = accuracy_df.rename(columns={"accepted_by_judge": "accuracy"})
|
14 |
+
accuracy_df["accuracy"] = (accuracy_df["accuracy"] * 100).round(1)
|
15 |
+
|
16 |
+
# Group by 'lmm' to calculate the count of images
|
17 |
+
image_count_df = df.groupby("lmm")["image"].nunique().reset_index()
|
18 |
+
image_count_df = image_count_df.rename(columns={"image": "Total Images"})
|
19 |
+
|
20 |
+
return accuracy_df, image_count_df
|
21 |
+
|
22 |
+
|
23 |
+
def expand_and_format_df(accuracy_df, image_count_df):
|
24 |
+
# Pivot and format the accuracy dataframe
|
25 |
+
expanded_df = accuracy_df.pivot(index="lmm", columns="question", values="accuracy")
|
26 |
+
expanded_df["Average"] = expanded_df.mean(axis=1).round(1)
|
27 |
+
expanded_df = expanded_df.sort_values(by="Average", ascending=False).reset_index()
|
28 |
+
expanded_df.columns.name = None
|
29 |
+
|
30 |
+
# Merge the 'total_images' column
|
31 |
+
final_df = pd.merge(expanded_df, image_count_df, on="lmm")
|
32 |
+
|
33 |
+
return final_df.rename(columns={"lmm": "Model"})
|
34 |
+
|
35 |
+
|
36 |
+
def map_model_names(df, name_dict):
|
37 |
+
# Map model names using the provided dictionary
|
38 |
+
df["Model"] = df["Model"].map(name_dict)
|
39 |
+
return df
|
40 |
+
|
41 |
+
|
42 |
+
# Dictionary for renaming models
|
43 |
+
name_dict = {
|
44 |
+
"gpt4v": "GPT-4V(ision)",
|
45 |
+
"llava": "LLaVA-1.5-13B",
|
46 |
+
"llava-7b": "LLaVA-1.5-7B",
|
47 |
+
"Long-SPHINX": "Long-SPHINX",
|
48 |
+
"SPHINX": "SPHINX",
|
49 |
+
"OtterHD": "OtterHD",
|
50 |
+
"minigpt4v2": "MiniGPT4v2",
|
51 |
+
"InstructBLIP-13B": "InstructBLIP-13B",
|
52 |
+
"InstructBLIP": "InstructBLIP-7B",
|
53 |
+
"qwen": "Qwen-VL-Chat",
|
54 |
+
"fuyu-8b": "Fuyu-8B",
|
55 |
+
}
|
56 |
+
|
57 |
+
# Processing steps
|
58 |
+
accuracy_df, image_count_df = load_and_process_data("raw_outputs.pkl")
|
59 |
+
final_df = expand_and_format_df(accuracy_df, image_count_df)
|
60 |
+
final_df = map_model_names(final_df, name_dict)
|
61 |
+
|
62 |
+
|
63 |
+
# Gradio interface
|
64 |
+
with gr.Blocks() as demo:
|
65 |
+
gr.Markdown("# GlitchBench Leaderboard")
|
66 |
+
with gr.Row():
|
67 |
+
gr.Dataframe(final_df)
|
68 |
+
|
69 |
+
demo.launch()
|
raw_outputs.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1777b3c9404d0d8ebbe286fd42114767e70f19c428af736c64273bc414af25e
|
3 |
+
size 22207169
|