glt3953 commited on
Commit
06085fa
·
1 Parent(s): a49f276

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -69
app.py CHANGED
@@ -15,13 +15,13 @@ if not os.path.exists(works_path):
15
  os.makedirs(works_path)
16
  print('作品目录:' + works_path)
17
 
18
- modelname = "small"
19
- model = whisper.load_model(modelname) #tiny、base、small、medium(可用)、large
20
 
21
- def transcript(audiofile, prompt, output_dir):
22
- os.system(f"whisper {audiofile} --model {modelname} --language zh --initial_prompt {prompt} --output_dir {output_dir}")
23
 
24
- def audio_recog(audiofile):
25
  utc_dt = datetime.datetime.utcnow()
26
  beijing_dt = utc_dt.astimezone(datetime.timezone(datetime.timedelta(hours=16)))
27
  formatted = beijing_dt.strftime("%Y-%m-%d_%H-%M-%S")
@@ -32,20 +32,20 @@ def audio_recog(audiofile):
32
 
33
  prompt = "以下是普通话的句子"
34
  filename = os.path.splitext(os.path.basename(audiofile))[0]
35
- output_txt = works_path + '/' + filename + '.txt'
36
- output_srt = works_path + '/' + filename + '.srt'
37
 
38
  output_dir = works_path
39
- transcript(audiofile, prompt, output_dir)
40
- with open(output_txt, "r") as f:
41
  text_output = f.read()
42
  print("text:" + text_output)
43
- print("text文件:" + output_txt)
44
 
45
- with open(output_srt, "r") as f:
46
  srt_output = f.read()
47
  print("srt:" + srt_output)
48
- print("srt文件:" + output_srt)
49
 
50
  utc_dt = datetime.datetime.utcnow()
51
  beijing_dt = utc_dt.astimezone(datetime.timezone(datetime.timedelta(hours=16)))
@@ -53,57 +53,31 @@ def audio_recog(audiofile):
53
  print(f"结束时间: {beijing_dt.year}年{beijing_dt.month}月{beijing_dt.day}日 "
54
  f"{beijing_dt.hour}时{beijing_dt.minute}分{beijing_dt.second}秒")
55
 
56
- return text_output, srt_output
57
 
58
- def video_recog(filepath):
59
- utc_dt = datetime.datetime.utcnow()
60
- beijing_dt = utc_dt.astimezone(datetime.timezone(datetime.timedelta(hours=16)))
61
- formatted = beijing_dt.strftime("%Y-%m-%d_%H-%M-%S")
62
- print(f"开始时间: {beijing_dt.year}年{beijing_dt.month}月{beijing_dt.day}日 "
63
- f"{beijing_dt.hour}时{beijing_dt.minute}分{beijing_dt.second}秒")
64
-
65
  filename = os.path.splitext(os.path.basename(filepath))[0]
66
  worksfile = works_path + '/works_' + filename + '.mp4'
67
  print("视频文件:" + filepath)
68
 
69
- # 提取音频为aac
70
  audiofile = works_path + '/' + filename + '.mp3'
71
  os.system(f"ffmpeg -i {filepath} -vn -c:a libmp3lame -q:a 4 {audiofile}")
72
- print("音频文件:" + audiofile)
73
 
74
- prompt = "以下是普通话的句子"
75
- output_txt = works_path + '/' + filename + '.txt'
76
- output_srt = works_path + '/' + filename + '.srt'
77
 
78
- output_dir = works_path
79
- transcript(audiofile, prompt, output_dir)
80
- with open(output_txt, "r") as f:
81
- text_output = f.read()
82
- print("text:" + text_output)
83
- print("text文件:" + output_txt)
84
-
85
- with open(output_srt, "r") as f:
86
- srt_output = f.read()
87
- print("srt:" + srt_output)
88
- print("srt文件:" + output_srt)
89
-
90
- # 给视频添加字幕
91
- os.system(f"ffmpeg -i {filepath} -i {output_srt} -c:s mov_text -c:v copy -c:a copy {worksfile}")
92
- print("作品:" + worksfile)
93
 
94
- utc_dt = datetime.datetime.utcnow()
95
- beijing_dt = utc_dt.astimezone(datetime.timezone(datetime.timedelta(hours=16)))
96
- formatted = beijing_dt.strftime("%Y-%m-%d_%H-%M-%S")
97
- print(f"结束时间: {beijing_dt.year}年{beijing_dt.month}月{beijing_dt.day}日 "
98
- f"{beijing_dt.hour}时{beijing_dt.minute}分{beijing_dt.second}秒")
99
-
100
- return text_output, srt_output, worksfile
101
 
102
  css_style = "#fixed_size_img {height: 240px;} " \
103
  "#overview {margin: auto;max-width: 400px; max-height: 400px;}"
104
 
105
  title = "音视频转录 by宁侠"
106
- description = ""
107
 
108
  examples_path = 'examples/'
109
  examples = [[examples_path + 'demo_shejipuhui.mp4']]
@@ -128,41 +102,46 @@ with gr.Blocks(title=title, css=css_style) as demo:
128
  </h1>
129
  ''')
130
  gr.Markdown(description)
131
- video_state = gr.State()
132
- audio_state = gr.State()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133
  with gr.Tab("🎥视频转录 Video Transcribe"):
134
  with gr.Row():
135
  with gr.Column():
136
  video_input = gr.Video(label="🎥视频输入 Video Input")
137
  gr.Examples(['examples/demo_shejipuhui.mp4'], [video_input], label='语音识别示例 ASR Demo')
 
138
  video_recog_button = gr.Button("👂视频识别 Recognize")
139
  video_output = gr.Video(label="🎥视频 Video", visible=False)
140
  with gr.Column():
141
- video_text_output = gr.Textbox(label="✏️识别结果 Recognition Result")
142
- video_srt_output = gr.Textbox(label="📖SRT字幕内容 SRT Subtitles")
 
 
143
  with gr.Row(visible=False):
144
  font_size = gr.Slider(minimum=10, maximum=100, value=32, step=2, label="🔠字幕字体大小 Subtitle Font Size")
145
  font_color = gr.Radio(["black", "white", "green", "red"], label="🌈字幕颜色 Subtitle Color", value='white')
146
  video_subtitles_button = gr.Button("添加字幕\nGenerate Subtitles", visible=False)
147
 
148
 
149
- video_recog_button.click(video_recog, inputs=[video_input], outputs=[video_text_output, video_srt_output, video_output])
150
  # video_subtitles_button.click(video_subtitles, inputs=[video_text_input], outputs=[video_output])
151
 
152
- with gr.Tab("🔊音频转录 Audio Transcribe"):
153
- with gr.Row():
154
- with gr.Column():
155
- audio_input = gr.Audio(label="🔊音频输入 Audio Input", type="filepath")
156
- gr.Examples(['examples/paddlespeech.asr-zh.wav', 'examples/demo_shejipuhui.mp3'], [audio_input])
157
- audio_recog_button = gr.Button("👂音频识别 Recognize")
158
- with gr.Column():
159
- audio_text_output = gr.Textbox(label="✏️识别结果 Recognition Result")
160
- audio_srt_output = gr.Textbox(label="📖SRT字幕内容 SRT Subtitles")
161
- audio_subtitles_button = gr.Button("添加字幕\nGenerate Subtitles", visible=False)
162
- audio_output = gr.Audio(label="🔊音频 Audio", visible=False)
163
-
164
- audio_recog_button.click(audio_recog, inputs=[audio_input], outputs=[audio_text_output, audio_srt_output])
165
- # audio_subtitles_button.click(audio_subtitles, inputs=[audio_text_input], outputs=[audio_output])
166
-
167
  # start gradio service in local
168
- demo.queue(api_open=False).launch(debug=True)
 
15
  os.makedirs(works_path)
16
  print('作品目录:' + works_path)
17
 
18
+ #model_size = "small"
19
+ #model = whisper.load_model(model_size) #tiny、base、small、medium(可用)、large
20
 
21
+ def transcript(model_size, audiofile, prompt, output_dir):
22
+ os.system(f"whisper {audiofile} --model {model_size} --language zh --initial_prompt {prompt} --output_dir {output_dir}")
23
 
24
+ def audio_recog(model_size, audiofile):
25
  utc_dt = datetime.datetime.utcnow()
26
  beijing_dt = utc_dt.astimezone(datetime.timezone(datetime.timedelta(hours=16)))
27
  formatted = beijing_dt.strftime("%Y-%m-%d_%H-%M-%S")
 
32
 
33
  prompt = "以下是普通话的句子"
34
  filename = os.path.splitext(os.path.basename(audiofile))[0]
35
+ text_file = works_path + '/' + filename + '.txt'
36
+ srt_file = works_path + '/' + filename + '.srt'
37
 
38
  output_dir = works_path
39
+ transcript(model_size, audiofile, prompt, output_dir)
40
+ with open(text_file, "r") as f:
41
  text_output = f.read()
42
  print("text:" + text_output)
43
+ print("text文件:" + text_file)
44
 
45
+ with open(srt_file, "r") as f:
46
  srt_output = f.read()
47
  print("srt:" + srt_output)
48
+ print("srt文件:" + srt_file)
49
 
50
  utc_dt = datetime.datetime.utcnow()
51
  beijing_dt = utc_dt.astimezone(datetime.timezone(datetime.timedelta(hours=16)))
 
53
  print(f"结束时间: {beijing_dt.year}年{beijing_dt.month}月{beijing_dt.day}日 "
54
  f"{beijing_dt.hour}时{beijing_dt.minute}分{beijing_dt.second}秒")
55
 
56
+ return text_output, text_file, srt_output, srt_file
57
 
58
+ def video_recog(model_size, filepath):
 
 
 
 
 
 
59
  filename = os.path.splitext(os.path.basename(filepath))[0]
60
  worksfile = works_path + '/works_' + filename + '.mp4'
61
  print("视频文件:" + filepath)
62
 
63
+ # 提取音频为mp3
64
  audiofile = works_path + '/' + filename + '.mp3'
65
  os.system(f"ffmpeg -i {filepath} -vn -c:a libmp3lame -q:a 4 {audiofile}")
 
66
 
67
+ #识别音频文件
68
+ text_output, text_file, srt_output, srt_file = audio_recog(model_size, audiofile)
 
69
 
70
+ # # 给视频添加字幕
71
+ # os.system(f"ffmpeg -i {filepath} -i {srt_file} -c:s mov_text -c:v copy -c:a copy {worksfile}")
72
+ # print("作品:" + worksfile)
 
 
 
 
 
 
 
 
 
 
 
 
73
 
74
+ return text_output, text_file, srt_output, srt_file
 
 
 
 
 
 
75
 
76
  css_style = "#fixed_size_img {height: 240px;} " \
77
  "#overview {margin: auto;max-width: 400px; max-height: 400px;}"
78
 
79
  title = "音视频转录 by宁侠"
80
+ description = "您只需要上传一段音频或视频文件,我们的服务会快速对其进行语音识别,然后生成相应的文字和字幕。这样,您就可以轻松地记录下重要的语音内容,或者为视频添加精准的字幕。现在就���试试我们的音视频转录服务吧,让您的生活和工作更加便捷!"
81
 
82
  examples_path = 'examples/'
83
  examples = [[examples_path + 'demo_shejipuhui.mp4']]
 
102
  </h1>
103
  ''')
104
  gr.Markdown(description)
105
+
106
+ with gr.Tab("🔊音频转录 Audio Transcribe"):
107
+ with gr.Row():
108
+ with gr.Column():
109
+ audio_input = gr.Audio(label="🔊音频输入 Audio Input", type="filepath")
110
+ gr.Examples(['examples/paddlespeech.asr-zh.wav', 'examples/demo_shejipuhui.mp3'], [audio_input])
111
+ audio_model_size = gr.components.Radio(label="模型尺寸", choices=["tiny", "base", "small", "medium", "large"], value="small")
112
+ audio_recog_button = gr.Button("👂音频识别 Recognize")
113
+ with gr.Column():
114
+ audio_text_output = gr.Textbox(label="✏️识别结果 Recognition Result", max_lines=5)
115
+ audio_text_file = gr.File(label="✏️识别结果文件 Recognition Result File")
116
+ audio_srt_output = gr.Textbox(label="📖SRT字幕内容 SRT Subtitles", max_lines=10)
117
+ audio_srt_file = gr.File(label="📖SRT字幕文件 SRT File")
118
+ audio_subtitles_button = gr.Button("添加字幕\nGenerate Subtitles", visible=False)
119
+ audio_output = gr.Audio(label="🔊音频 Audio", visible=False)
120
+
121
+ audio_recog_button.click(audio_recog, inputs=[audio_model_size, audio_input], outputs=[audio_text_output, audio_text_file, audio_srt_output, audio_srt_file])
122
+ # audio_subtitles_button.click(audio_subtitles, inputs=[audio_text_input], outputs=[audio_output])
123
+
124
  with gr.Tab("🎥视频转录 Video Transcribe"):
125
  with gr.Row():
126
  with gr.Column():
127
  video_input = gr.Video(label="🎥视频输入 Video Input")
128
  gr.Examples(['examples/demo_shejipuhui.mp4'], [video_input], label='语音识别示例 ASR Demo')
129
+ video_model_size = gr.components.Radio(label="模型尺寸", choices=["tiny", "base", "small", "medium", "large"], value="small")
130
  video_recog_button = gr.Button("👂视频识别 Recognize")
131
  video_output = gr.Video(label="🎥视频 Video", visible=False)
132
  with gr.Column():
133
+ video_text_output = gr.Textbox(label="✏️识别结果 Recognition Result", max_lines=5)
134
+ video_text_file = gr.File(label="✏️识别结果文件 Recognition Result File")
135
+ video_srt_output = gr.Textbox(label="📖SRT字幕内容 SRT Subtitles", max_lines=10)
136
+ video_srt_file = gr.File(label="📖SRT字幕文件 SRT File")
137
  with gr.Row(visible=False):
138
  font_size = gr.Slider(minimum=10, maximum=100, value=32, step=2, label="🔠字幕字体大小 Subtitle Font Size")
139
  font_color = gr.Radio(["black", "white", "green", "red"], label="🌈字幕颜色 Subtitle Color", value='white')
140
  video_subtitles_button = gr.Button("添加字幕\nGenerate Subtitles", visible=False)
141
 
142
 
143
+ video_recog_button.click(video_recog, inputs=[video_model_size, video_input], outputs=[video_text_output, video_text_file, video_srt_output, video_srt_file])
144
  # video_subtitles_button.click(video_subtitles, inputs=[video_text_input], outputs=[video_output])
145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
  # start gradio service in local
147
+ demo.queue(api_open=False).launch(debug=True)