Spaces:
Paused
Paused
File size: 3,926 Bytes
f229528 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import os
from typing import List
from chainlit.types import AskFileResponse
from aimakerspace.text_utils import CharacterTextSplitter, TextFileLoader
from aimakerspace.openai_utils.prompts import (
UserRolePrompt,
SystemRolePrompt,
AssistantRolePrompt,
)
from aimakerspace.openai_utils.embedding import EmbeddingModel
from aimakerspace.vectordatabase import VectorDatabase
from aimakerspace.openai_utils.chatmodel import ChatOpenAI
import chainlit as cl
from langchain_community.document_loaders import PyPDFLoader # Import PyPDFLoader
system_template = """\
Use the following context to answer a user's question. If you cannot find the answer in the context, say you don't know the answer."""
system_role_prompt = SystemRolePrompt(system_template)
user_prompt_template = """\
Context:
{context}
Question:
{question}
"""
user_role_prompt = UserRolePrompt(user_prompt_template)
class RetrievalAugmentedQAPipeline:
def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None:
self.llm = llm
self.vector_db_retriever = vector_db_retriever
async def arun_pipeline(self, user_query: str):
context_list = self.vector_db_retriever.search_by_text(user_query, k=4)
context_prompt = ""
for context in context_list:
context_prompt += context[0] + "\n"
formatted_system_prompt = system_role_prompt.create_message()
formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt)
async def generate_response():
async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]):
yield chunk
return {"response": generate_response(), "context": context_list}
text_splitter = CharacterTextSplitter()
def process_file(file: AskFileResponse):
import tempfile
with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".txt") as temp_file:
temp_file_path = temp_file.name
with open(temp_file_path, "wb") as f:
f.write(file.content)
# Check the file type
if file.name.endswith('.pdf'):
pdf_loader = PyPDFLoader(temp_file_path)
split_documents = pdf_loader.load_and_split()
texts = [doc.page_content for doc in split_documents]
else:
text_loader = TextFileLoader(temp_file_path)
documents = text_loader.load_documents()
texts = text_splitter.split_texts(documents)
return texts
@cl.on_chat_start
async def on_chat_start():
files = None
# Wait for the user to upload a file
while files is None:
files = await cl.AskFileMessage(
content="Please upload a Text or PDF file to begin!",
accept=["text/plain", "application/pdf"],
max_size_mb=2,
timeout=180,
).send()
file = files[0]
msg = cl.Message(
content=f"Processing `{file.name}`...", disable_human_feedback=True
)
await msg.send()
# Load the file
texts = process_file(file)
print(f"Processing {len(texts)} text chunks")
# Create a dict vector store
vector_db = VectorDatabase()
vector_db = await vector_db.abuild_from_list(texts)
chat_openai = ChatOpenAI()
# Create a chain
retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(
vector_db_retriever=vector_db,
llm=chat_openai
)
# Let the user know that the system is ready
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
await msg.update()
cl.user_session.set("chain", retrieval_augmented_qa_pipeline)
@cl.on_message
async def main(message):
chain = cl.user_session.get("chain")
msg = cl.Message(content="")
result = await chain.arun_pipeline(message.content)
async for stream_resp in result["response"]:
await msg.stream_token(stream_resp)
await msg.send()
|