Spaces:
Running
Running
File size: 4,177 Bytes
620d08d a703588 f9f8d44 620d08d 46cde66 778d09e 46cde66 a703588 46cde66 a703588 778d09e a703588 620d08d d74d80d 778d09e a703588 620d08d 778d09e 620d08d 46cde66 620d08d 46cde66 a703588 620d08d 46cde66 620d08d a703588 620d08d 46cde66 a703588 46cde66 620d08d a703588 46cde66 a703588 46cde66 a703588 620d08d f9f8d44 620d08d a703588 620d08d f9f8d44 620d08d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import requests\n",
"import json\n",
"from urllib.request import urlretrieve\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import anvil.server\n",
"anvil.server.connect('PLMOIU5VCGGUOJH2XORIBWV3-ZXZVFLWX7QFIIAF4')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"anvil.server.call('encode_anvil','I am a robot')[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def encode(text,server='local'):\n",
" headers = {'Content-Type': 'application/json'}\n",
" if server=='local': url='http://127.0.0.1:7860/encode'\n",
" elif server=='hf': url='https://huggingface.co/spaces/gmshroff/gmserver/encode'\n",
" body={'text':text}\n",
" response=requests.post(url=url,data=json.dumps(body),headers = {'Content-Type': 'application/json'})\n",
" return response\n",
" return json.loads(response.content)['embedding']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"response=encode('I am a robot',server='local')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"response.content"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"headers = {'Content-Type': 'application/json'}\n",
"# url='http://127.0.0.1:5000/run'\n",
"url='https://huggingface.co/spaces/gmshroff/gmserver/'\n",
"# url='http://127.0.0.1:7860/run'\n",
"# body={\"script\":\"python update_valdata.py\"}\n",
"# body={\"script\":\"pwd\"}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"response=requests.get(url=url)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"response.content"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# url='http://127.0.0.1:7860/encode'\n",
"body={'text':'I am very good'}\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"response=requests.post(url=url,data=json.dumps(body),headers = {'Content-Type': 'application/json'})\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"url"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(response)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(response.__dict__)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(json.loads(response.content)['embedding'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"urlretrieve(url='http://127.0.0.1:7860/file/data.csv',filename='./returned_file.csv')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df=pd.read_parquet('/tmp/validation_subset_int8.parquet')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|