Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import fitz
|
3 |
+
import numpy as np
|
4 |
+
import requests
|
5 |
+
import faiss
|
6 |
+
import re
|
7 |
+
import json
|
8 |
+
import pandas as pd
|
9 |
+
from docx import Document
|
10 |
+
from pptx import Presentation
|
11 |
+
from sentence_transformers import SentenceTransformer
|
12 |
+
from concurrent.futures import ThreadPoolExecutor
|
13 |
+
|
14 |
+
# Configuration
|
15 |
+
GROQ_API_KEY = "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" # 🔑 REPLACE WITH YOUR ACTUAL KEY
|
16 |
+
MODEL_NAME = "all-MiniLM-L6-v2"
|
17 |
+
CHUNK_SIZE = 512
|
18 |
+
MAX_TOKENS = 4096
|
19 |
+
MODEL = SentenceTransformer(MODEL_NAME)
|
20 |
+
WORKERS = 8
|
21 |
+
|
22 |
+
class DocumentProcessor:
|
23 |
+
def __init__(self):
|
24 |
+
self.index = faiss.IndexFlatIP(MODEL.get_sentence_embedding_dimension())
|
25 |
+
self.chunks = []
|
26 |
+
self.processor_pool = ThreadPoolExecutor(max_workers=WORKERS)
|
27 |
+
|
28 |
+
def extract_text_from_pptx(self, file_path):
|
29 |
+
try:
|
30 |
+
prs = Presentation(file_path)
|
31 |
+
return " ".join([shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")])
|
32 |
+
except Exception as e:
|
33 |
+
print(f"PPTX Error: {str(e)}")
|
34 |
+
return ""
|
35 |
+
|
36 |
+
def extract_text_from_xls_csv(self, file_path):
|
37 |
+
try:
|
38 |
+
if file_path.endswith(('.xls', '.xlsx')):
|
39 |
+
df = pd.read_excel(file_path)
|
40 |
+
else:
|
41 |
+
df = pd.read_csv(file_path)
|
42 |
+
return " ".join(df.astype(str).values.flatten())
|
43 |
+
except Exception as e:
|
44 |
+
print(f"Spreadsheet Error: {str(e)}")
|
45 |
+
return ""
|
46 |
+
|
47 |
+
def extract_text_from_pdf(self, file_path):
|
48 |
+
try:
|
49 |
+
doc = fitz.open(file_path)
|
50 |
+
return " ".join(page.get_text("text", flags=fitz.TEXT_PRESERVE_WHITESPACE) for page in doc)
|
51 |
+
except Exception as e:
|
52 |
+
print(f"PDF Error: {str(e)}")
|
53 |
+
return ""
|
54 |
+
|
55 |
+
def process_file(self, file):
|
56 |
+
try:
|
57 |
+
file_path = file.name
|
58 |
+
print(f"Processing: {file_path}")
|
59 |
+
|
60 |
+
if file_path.endswith('.pdf'):
|
61 |
+
text = self.extract_text_from_pdf(file_path)
|
62 |
+
elif file_path.endswith('.docx'):
|
63 |
+
text = " ".join(p.text for p in Document(file_path).paragraphs)
|
64 |
+
elif file_path.endswith('.txt'):
|
65 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
66 |
+
text = f.read()
|
67 |
+
elif file_path.endswith('.pptx'):
|
68 |
+
text = self.extract_text_from_pptx(file_path)
|
69 |
+
elif file_path.endswith(('.xls', '.xlsx', '.csv')):
|
70 |
+
text = self.extract_text_from_xls_csv(file_path)
|
71 |
+
else:
|
72 |
+
return ""
|
73 |
+
|
74 |
+
clean_text = re.sub(r'\s+', ' ', text).strip()
|
75 |
+
print(f"Extracted {len(clean_text)} characters from {file_path}")
|
76 |
+
return clean_text
|
77 |
+
except Exception as e:
|
78 |
+
print(f"Processing Error: {str(e)}")
|
79 |
+
return ""
|
80 |
+
|
81 |
+
def semantic_chunking(self, text):
|
82 |
+
words = re.findall(r'\S+\s*', text)
|
83 |
+
chunks = [''.join(words[i:i+CHUNK_SIZE//2]) for i in range(0, len(words), CHUNK_SIZE//2)]
|
84 |
+
return chunks[:1000]
|
85 |
+
|
86 |
+
def process_documents(self, files):
|
87 |
+
self.chunks = []
|
88 |
+
if not files:
|
89 |
+
return "No files uploaded!"
|
90 |
+
|
91 |
+
print("\n" + "="*40 + " PROCESSING DOCUMENTS " + "="*40)
|
92 |
+
texts = list(self.processor_pool.map(self.process_file, files))
|
93 |
+
|
94 |
+
with ThreadPoolExecutor(max_workers=WORKERS) as executor:
|
95 |
+
chunk_lists = list(executor.map(self.semantic_chunking, texts))
|
96 |
+
|
97 |
+
all_chunks = [chunk for chunk_list in chunk_lists for chunk in chunk_list]
|
98 |
+
print(f"Total chunks generated: {len(all_chunks)}")
|
99 |
+
|
100 |
+
if not all_chunks:
|
101 |
+
return "Error: No chunks generated from documents"
|
102 |
+
|
103 |
+
try:
|
104 |
+
embeddings = MODEL.encode(
|
105 |
+
all_chunks,
|
106 |
+
batch_size=512,
|
107 |
+
convert_to_tensor=True,
|
108 |
+
show_progress_bar=False
|
109 |
+
).cpu().numpy().astype('float32')
|
110 |
+
|
111 |
+
self.index.reset()
|
112 |
+
self.index.add(embeddings)
|
113 |
+
self.chunks = all_chunks
|
114 |
+
return f"Processed {len(all_chunks)} chunks from {len(files)} files"
|
115 |
+
except Exception as e:
|
116 |
+
print(f"Embedding Error: {str(e)}")
|
117 |
+
return f"Error: {str(e)}"
|
118 |
+
|
119 |
+
def query(self, question):
|
120 |
+
if not self.chunks:
|
121 |
+
return "Please process documents first", False
|
122 |
+
|
123 |
+
try:
|
124 |
+
print("\n" + "="*40 + " QUERY PROCESSING " + "="*40)
|
125 |
+
print(f"Question: {question}")
|
126 |
+
|
127 |
+
question_embedding = MODEL.encode([question], convert_to_tensor=True).cpu().numpy().astype('float32')
|
128 |
+
_, indices = self.index.search(question_embedding, 3)
|
129 |
+
print(f"Top indices: {indices}")
|
130 |
+
|
131 |
+
context = "\n".join([self.chunks[i] for i in indices[0] if i < len(self.chunks)])
|
132 |
+
print(f"Context length: {len(context)} characters")
|
133 |
+
|
134 |
+
headers = {
|
135 |
+
"Authorization": f"Bearer {GROQ_API_KEY}",
|
136 |
+
"Content-Type": "application/json"
|
137 |
+
}
|
138 |
+
|
139 |
+
payload = {
|
140 |
+
"messages": [{
|
141 |
+
"role": "user",
|
142 |
+
"content": f"Answer concisely: {question}\nContext: {context}"
|
143 |
+
}],
|
144 |
+
"model": "mixtral-8x7b-32768",
|
145 |
+
"temperature": 0.3,
|
146 |
+
"max_tokens": MAX_TOKENS,
|
147 |
+
"stream": True
|
148 |
+
}
|
149 |
+
|
150 |
+
response = requests.post(
|
151 |
+
"https://api.groq.com/openai/v1/chat/completions",
|
152 |
+
headers=headers,
|
153 |
+
json=payload,
|
154 |
+
timeout=20
|
155 |
+
)
|
156 |
+
|
157 |
+
print(f"API Status Code: {response.status_code}")
|
158 |
+
|
159 |
+
if response.status_code != 200:
|
160 |
+
return f"API Error: {response.text}", False
|
161 |
+
|
162 |
+
full_answer = []
|
163 |
+
for chunk in response.iter_lines():
|
164 |
+
if chunk:
|
165 |
+
try:
|
166 |
+
decoded = chunk.decode('utf-8').strip()
|
167 |
+
if decoded.startswith('data:'):
|
168 |
+
data = json.loads(decoded[5:])
|
169 |
+
if content := data.get('choices', [{}])[0].get('delta', {}).get('content', ''):
|
170 |
+
full_answer.append(content)
|
171 |
+
except Exception as e:
|
172 |
+
print(f"Chunk Error: {str(e)}")
|
173 |
+
continue
|
174 |
+
|
175 |
+
final_answer = ''.join(full_answer)
|
176 |
+
print(f"Final Answer: {final_answer}")
|
177 |
+
return final_answer, True
|
178 |
+
|
179 |
+
except Exception as e:
|
180 |
+
print(f"Query Error: {str(e)}")
|
181 |
+
return f"Error: {str(e)}", False
|
182 |
+
|
183 |
+
processor = DocumentProcessor()
|
184 |
+
|
185 |
+
def ask_question(question, chat_history):
|
186 |
+
if not question.strip():
|
187 |
+
return chat_history + [("", "Please enter a valid question")]
|
188 |
+
|
189 |
+
answer, success = processor.query(question)
|
190 |
+
return chat_history + [(question, answer)]
|
191 |
+
|
192 |
+
with gr.Blocks(title="System") as app:
|
193 |
+
gr.Markdown("## 🚀 Multi-Format-Reader ChatBot")
|
194 |
+
with gr.Row():
|
195 |
+
files = gr.File(file_count="multiple",
|
196 |
+
file_types=[".pdf", ".docx", ".txt", ".pptx", ".xls", ".xlsx", ".csv"],
|
197 |
+
label="Upload Documents")
|
198 |
+
process_btn = gr.Button("Process", variant="primary")
|
199 |
+
status = gr.Textbox(label="Processing Status", interactive=False)
|
200 |
+
chatbot = gr.Chatbot(height=500, label="Chat History")
|
201 |
+
with gr.Row():
|
202 |
+
question = gr.Textbox(label="Your Query",
|
203 |
+
placeholder="Enter your question...",
|
204 |
+
max_lines=3)
|
205 |
+
ask_btn = gr.Button("Ask", variant="primary")
|
206 |
+
clear_btn = gr.Button("Clear Chat")
|
207 |
+
|
208 |
+
process_btn.click(
|
209 |
+
fn=processor.process_documents,
|
210 |
+
inputs=files,
|
211 |
+
outputs=status
|
212 |
+
)
|
213 |
+
|
214 |
+
ask_btn.click(
|
215 |
+
fn=ask_question,
|
216 |
+
inputs=[question, chatbot],
|
217 |
+
outputs=chatbot
|
218 |
+
).then(lambda: "", None, question)
|
219 |
+
|
220 |
+
clear_btn.click(
|
221 |
+
fn=lambda: [],
|
222 |
+
inputs=None,
|
223 |
+
outputs=chatbot
|
224 |
+
)
|
225 |
+
|
226 |
+
app.launch()
|