Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from sentence_transformers import SentenceTransformer
|
4 |
+
import faiss
|
5 |
+
import numpy as np
|
6 |
+
import google.generativeai as genai
|
7 |
+
from datasets import load_dataset
|
8 |
+
from typing import List, Dict
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
|
11 |
+
# Load environment variables
|
12 |
+
load_dotenv()
|
13 |
+
|
14 |
+
# Configuration
|
15 |
+
MODEL_NAME = "all-MiniLM-L6-v2"
|
16 |
+
GENAI_MODEL = "gemini-pro"
|
17 |
+
DATASET_LINK = "https://huggingface.co/datasets/midrees2806/7K_Dataset " # Replace with your dataset link
|
18 |
+
CHUNK_SIZE = 500
|
19 |
+
TOP_K = 3
|
20 |
+
|
21 |
+
# Initialize models
|
22 |
+
embedding_model = SentenceTransformer(MODEL_NAME)
|
23 |
+
|
24 |
+
class GroqRAGSystem:
|
25 |
+
def __init__(self):
|
26 |
+
self.index = None
|
27 |
+
self.chunks = []
|
28 |
+
self.dataset_loaded = False
|
29 |
+
self.gemini_api_key = os.getenv("AIzaSyASrFvE3gFPigihza0JTuALzZmBx0Kc3d0")
|
30 |
+
if self.gemini_api_key:
|
31 |
+
genai.configure(api_key=self.gemini_api_key)
|
32 |
+
|
33 |
+
def load_dataset_from_link(self, dataset_link: str):
|
34 |
+
"""Load dataset from Hugging Face link"""
|
35 |
+
try:
|
36 |
+
# Extract dataset name from URL
|
37 |
+
dataset_name = dataset_link.split("datasets/")[-1].split("/")[0]
|
38 |
+
if not dataset_name:
|
39 |
+
raise ValueError("Invalid dataset URL format")
|
40 |
+
|
41 |
+
with gr.Progress() as progress:
|
42 |
+
progress(0.1, desc="π¦ Downloading dataset...")
|
43 |
+
dataset = load_dataset(dataset_name, split='train')
|
44 |
+
|
45 |
+
progress(0.5, desc="π¨ Processing dataset...")
|
46 |
+
if 'context' in dataset.features:
|
47 |
+
self.chunks = list(set(dataset['context']))
|
48 |
+
elif 'text' in dataset.features:
|
49 |
+
self.chunks = dataset['text']
|
50 |
+
elif 'question' in dataset.features and 'answer' in dataset.features:
|
51 |
+
self.chunks = [f"Q: {q}\nA: {a}" for q, a in zip(dataset['question'], dataset['answer'])]
|
52 |
+
else:
|
53 |
+
raise ValueError("Unsupported dataset format")
|
54 |
+
|
55 |
+
progress(0.7, desc="π§ Creating embeddings...")
|
56 |
+
embeddings = embedding_model.encode(self.chunks, show_progress_bar=False)
|
57 |
+
self.index = faiss.IndexFlatL2(embeddings.shape[1])
|
58 |
+
self.index.add(embeddings.astype('float32'))
|
59 |
+
|
60 |
+
self.dataset_loaded = True
|
61 |
+
progress(1.0, desc="β
Dataset loaded successfully!")
|
62 |
+
return True
|
63 |
+
except Exception as e:
|
64 |
+
gr.Error(f"Failed to load dataset: {str(e)}")
|
65 |
+
return False
|
66 |
+
|
67 |
+
def get_relevant_context(self, query: str) -> str:
|
68 |
+
"""Retrieve most relevant chunks with scores"""
|
69 |
+
query_embed = embedding_model.encode([query])
|
70 |
+
scores, indices = self.index.search(query_embed.astype('float32'), k=TOP_K)
|
71 |
+
|
72 |
+
context = []
|
73 |
+
for i, (score, idx) in enumerate(zip(scores[0], indices[0])):
|
74 |
+
if idx < len(self.chunks):
|
75 |
+
context.append(f"π Match {i+1} (Score: {1-score:.2f}):\n{self.chunks[idx]}\n")
|
76 |
+
return "\n".join(context)
|
77 |
+
|
78 |
+
def generate_response(self, query: str) -> str:
|
79 |
+
"""Generate response using only dataset context"""
|
80 |
+
if not self.dataset_loaded:
|
81 |
+
return "β οΈ Please load the dataset first"
|
82 |
+
if not self.gemini_api_key:
|
83 |
+
return "π Please set your Gemini API key in environment variables"
|
84 |
+
|
85 |
+
context = self.get_relevant_context(query)
|
86 |
+
|
87 |
+
prompt = f"""You are an expert AI assistant that answers STRICTLY based on the provided context.
|
88 |
+
Follow these rules:
|
89 |
+
1. Answer concisely using ONLY the context below
|
90 |
+
2. If the answer isn't in the context, say "I couldn't find this in the dataset"
|
91 |
+
3. Never make up information
|
92 |
+
4. For ambiguous questions, ask for clarification
|
93 |
+
|
94 |
+
Context:
|
95 |
+
{context}
|
96 |
+
|
97 |
+
Question: {query}
|
98 |
+
|
99 |
+
Answer:"""
|
100 |
+
|
101 |
+
try:
|
102 |
+
model = genai.GenerativeModel(GENAI_MODEL)
|
103 |
+
response = model.generate_content(prompt)
|
104 |
+
return response.text
|
105 |
+
except Exception as e:
|
106 |
+
return f"β οΈ Error generating response: {str(e)}"
|
107 |
+
|
108 |
+
# Initialize the RAG system
|
109 |
+
rag_system = GroqRAGSystem()
|
110 |
+
|
111 |
+
# Custom CSS for modern UI
|
112 |
+
css = """
|
113 |
+
.gradio-container {
|
114 |
+
max-width: 900px !important;
|
115 |
+
margin: auto !important;
|
116 |
+
font-family: 'Inter', sans-serif;
|
117 |
+
}
|
118 |
+
.dark .gradio-container {
|
119 |
+
background-color: #1e1e2e;
|
120 |
+
}
|
121 |
+
.message-user {
|
122 |
+
background: #3b82f6;
|
123 |
+
color: white;
|
124 |
+
border-radius: 18px 18px 0 18px;
|
125 |
+
padding: 12px;
|
126 |
+
margin: 8px 0;
|
127 |
+
max-width: 80%;
|
128 |
+
margin-left: auto;
|
129 |
+
}
|
130 |
+
.message-bot {
|
131 |
+
background: #f3f4f6;
|
132 |
+
color: #111827;
|
133 |
+
border-radius: 18px 18px 18px 0;
|
134 |
+
padding: 12px;
|
135 |
+
margin: 8px 0;
|
136 |
+
max-width: 80%;
|
137 |
+
}
|
138 |
+
.dark .message-bot {
|
139 |
+
background: #2d3748;
|
140 |
+
color: #f7fafc;
|
141 |
+
}
|
142 |
+
.progress-bar {
|
143 |
+
height: 6px !important;
|
144 |
+
}
|
145 |
+
"""
|
146 |
+
|
147 |
+
# Chat interface
|
148 |
+
with gr.Blocks(css=css, theme=gr.themes.Default()) as app:
|
149 |
+
# Store chat history
|
150 |
+
chat_history = gr.State([])
|
151 |
+
|
152 |
+
gr.Markdown("UE-ChatBot")
|
153 |
+
gr.Markdown(f"**Dataset:** {DATASET_LINK}")
|
154 |
+
|
155 |
+
with gr.Row():
|
156 |
+
with gr.Column(scale=1):
|
157 |
+
gr.Markdown("## βοΈ Configuration")
|
158 |
+
dataset_url = gr.Textbox(
|
159 |
+
label="Hugging Face Dataset URL",
|
160 |
+
value=DATASET_LINK,
|
161 |
+
interactive=True
|
162 |
+
)
|
163 |
+
load_btn = gr.Button("π Load Dataset", variant="primary")
|
164 |
+
status = gr.Markdown("βΉοΈ Please load the dataset first")
|
165 |
+
|
166 |
+
with gr.Column(scale=2):
|
167 |
+
chatbot = gr.Chatbot(
|
168 |
+
label="Chat History",
|
169 |
+
bubble_full_width=False,
|
170 |
+
avatar_images=(
|
171 |
+
"https://avatars.githubusercontent.com/u/1561194?v=4", # User avatar
|
172 |
+
"https://huggingface.co/spaces/groq/Groq-LLM/resolve/main/groq_logo.png" # Bot avatar
|
173 |
+
)
|
174 |
+
)
|
175 |
+
query = gr.Textbox(
|
176 |
+
label="Type your question...",
|
177 |
+
placeholder="Ask about the dataset content",
|
178 |
+
autofocus=True
|
179 |
+
)
|
180 |
+
submit_btn = gr.Button("π€ Submit", variant="primary")
|
181 |
+
clear_btn = gr.Button("ποΈ Clear Chat", variant="secondary")
|
182 |
+
|
183 |
+
# Event handlers
|
184 |
+
def load_dataset(dataset_url):
|
185 |
+
if rag_system.load_dataset_from_link(dataset_url):
|
186 |
+
return "β
Dataset loaded successfully!"
|
187 |
+
return "β Failed to load dataset"
|
188 |
+
|
189 |
+
def respond(query, history):
|
190 |
+
if not query.strip():
|
191 |
+
return history, ""
|
192 |
+
|
193 |
+
# Add user message
|
194 |
+
history.append((query, None))
|
195 |
+
|
196 |
+
# Get response
|
197 |
+
response = rag_system.generate_response(query)
|
198 |
+
|
199 |
+
# Update history
|
200 |
+
history[-1] = (query, response)
|
201 |
+
return history, ""
|
202 |
+
|
203 |
+
# Connect components
|
204 |
+
load_btn.click(
|
205 |
+
load_dataset,
|
206 |
+
inputs=dataset_url,
|
207 |
+
outputs=status
|
208 |
+
)
|
209 |
+
|
210 |
+
submit_btn.click(
|
211 |
+
respond,
|
212 |
+
inputs=[query, chat_history],
|
213 |
+
outputs=[chatbot, query]
|
214 |
+
)
|
215 |
+
|
216 |
+
query.submit(
|
217 |
+
respond,
|
218 |
+
inputs=[query, chat_history],
|
219 |
+
outputs=[chatbot, query]
|
220 |
+
)
|
221 |
+
|
222 |
+
clear_btn.click(
|
223 |
+
lambda: [],
|
224 |
+
inputs=None,
|
225 |
+
outputs=chatbot
|
226 |
+
)
|
227 |
+
|
228 |
+
# For Hugging Face Spaces
|
229 |
+
if __name__ == "__main__":
|
230 |
+
app.launch(debug=True)
|