Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,18 +10,19 @@ import warnings
|
|
10 |
warnings.filterwarnings("ignore")
|
11 |
|
12 |
# Configuration - PUT YOUR API KEY HERE
|
13 |
-
GEMINI_API_KEY = "
|
14 |
MODEL_NAME = "all-MiniLM-L6-v2"
|
15 |
GENAI_MODEL = "gemini-pro"
|
16 |
DATASET_NAME = "midrees2806/7K_Dataset"
|
17 |
CHUNK_SIZE = 500
|
18 |
TOP_K = 3
|
19 |
|
20 |
-
# Initialize Gemini
|
21 |
genai.configure(
|
22 |
api_key=GEMINI_API_KEY,
|
|
|
23 |
client_options={
|
24 |
-
'api_endpoint': "https://generativelanguage.googleapis.com/v1beta"
|
25 |
}
|
26 |
)
|
27 |
|
@@ -32,71 +33,93 @@ class GeminiRAGSystem:
|
|
32 |
self.dataset_loaded = False
|
33 |
self.loading_error = None
|
34 |
|
35 |
-
|
36 |
try:
|
37 |
self.embedding_model = SentenceTransformer(MODEL_NAME)
|
|
|
38 |
except Exception as e:
|
39 |
-
|
|
|
|
|
40 |
|
41 |
-
|
42 |
self.load_dataset()
|
43 |
|
44 |
def load_dataset(self):
|
45 |
-
"""Load dataset
|
46 |
try:
|
|
|
47 |
dataset = load_dataset(
|
48 |
DATASET_NAME,
|
49 |
split='train',
|
50 |
download_mode="force_redownload"
|
51 |
)
|
|
|
52 |
|
53 |
if 'text' in dataset.features:
|
54 |
-
self.chunks = dataset['text'][:1000]
|
|
|
55 |
elif 'context' in dataset.features:
|
56 |
self.chunks = dataset['context'][:1000]
|
|
|
57 |
else:
|
58 |
raise ValueError("Dataset must have 'text' or 'context' field")
|
59 |
|
60 |
-
|
61 |
embeddings = self.embedding_model.encode(
|
62 |
self.chunks,
|
63 |
show_progress_bar=False,
|
64 |
convert_to_numpy=True
|
65 |
)
|
|
|
|
|
66 |
self.index = faiss.IndexFlatL2(embeddings.shape[1])
|
67 |
self.index.add(embeddings.astype('float32'))
|
|
|
68 |
|
69 |
self.dataset_loaded = True
|
|
|
70 |
except Exception as e:
|
71 |
-
|
72 |
-
print(
|
|
|
73 |
|
74 |
def get_relevant_context(self, query: str) -> str:
|
75 |
-
"""Retrieve
|
76 |
if not self.index:
|
|
|
77 |
return ""
|
78 |
|
79 |
try:
|
|
|
80 |
query_embed = self.embedding_model.encode(
|
81 |
[query],
|
82 |
convert_to_numpy=True
|
83 |
).astype('float32')
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
|
86 |
-
|
|
|
87 |
except Exception as e:
|
88 |
print(f"Search error: {str(e)}")
|
89 |
return ""
|
90 |
|
91 |
def generate_response(self, query: str) -> str:
|
92 |
-
"""Generate response with error handling"""
|
93 |
if not self.dataset_loaded:
|
94 |
-
if self.loading_error
|
95 |
-
|
96 |
-
return
|
|
|
|
|
97 |
|
98 |
context = self.get_relevant_context(query)
|
99 |
if not context:
|
|
|
100 |
return "No relevant context found"
|
101 |
|
102 |
prompt = f"""Answer based on this context:
|
@@ -105,35 +128,48 @@ class GeminiRAGSystem:
|
|
105 |
Question: {query}
|
106 |
Answer concisely:"""
|
107 |
|
|
|
|
|
108 |
try:
|
109 |
model = genai.GenerativeModel(GENAI_MODEL)
|
110 |
response = model.generate_content(
|
111 |
prompt,
|
112 |
generation_config=genai.types.GenerationConfig(
|
113 |
-
temperature=0.3
|
|
|
114 |
)
|
115 |
)
|
116 |
|
|
|
|
|
117 |
if response.candidates and response.candidates[0].content.parts:
|
118 |
-
|
|
|
|
|
|
|
119 |
return "⚠️ No response from API"
|
120 |
except Exception as e:
|
121 |
-
|
|
|
|
|
122 |
|
123 |
-
# Initialize system
|
|
|
124 |
try:
|
125 |
rag_system = GeminiRAGSystem()
|
126 |
init_status = "✅ System ready" if rag_system.dataset_loaded else f"⚠️ Initializing... {rag_system.loading_error or ''}"
|
|
|
127 |
except Exception as e:
|
128 |
init_status = f"❌ Initialization failed: {str(e)}"
|
|
|
129 |
rag_system = None
|
130 |
|
131 |
-
# Create interface
|
132 |
with gr.Blocks(title="Document Chatbot") as app:
|
133 |
gr.Markdown("# Document Chatbot with Gemini")
|
134 |
|
135 |
with gr.Row():
|
136 |
-
chatbot = gr.Chatbot(height=500)
|
137 |
|
138 |
with gr.Row():
|
139 |
query = gr.Textbox(label="Your question", placeholder="Ask about the documents...")
|
@@ -142,15 +178,20 @@ with gr.Blocks(title="Document Chatbot") as app:
|
|
142 |
submit_btn = gr.Button("Submit", variant="primary")
|
143 |
clear_btn = gr.Button("Clear", variant="secondary")
|
144 |
|
145 |
-
status = gr.Textbox(label="Status", value=init_status)
|
146 |
|
147 |
def respond(message, chat_history):
|
|
|
148 |
if not rag_system:
|
149 |
-
|
|
|
|
|
|
|
150 |
response = rag_system.generate_response(message)
|
151 |
return chat_history + [(message, response)]
|
152 |
|
153 |
def clear_chat():
|
|
|
154 |
return []
|
155 |
|
156 |
submit_btn.click(respond, [query, chatbot], [chatbot])
|
@@ -158,4 +199,5 @@ with gr.Blocks(title="Document Chatbot") as app:
|
|
158 |
clear_btn.click(clear_chat, outputs=chatbot)
|
159 |
|
160 |
if __name__ == "__main__":
|
161 |
-
|
|
|
|
10 |
warnings.filterwarnings("ignore")
|
11 |
|
12 |
# Configuration - PUT YOUR API KEY HERE
|
13 |
+
GEMINI_API_KEY = "AIzaSyYourActualApiKeyHere" # ⚠️ REPLACE WITH YOUR KEY
|
14 |
MODEL_NAME = "all-MiniLM-L6-v2"
|
15 |
GENAI_MODEL = "gemini-pro"
|
16 |
DATASET_NAME = "midrees2806/7K_Dataset"
|
17 |
CHUNK_SIZE = 500
|
18 |
TOP_K = 3
|
19 |
|
20 |
+
# Initialize Gemini with enhanced configuration
|
21 |
genai.configure(
|
22 |
api_key=GEMINI_API_KEY,
|
23 |
+
transport='rest', # Force REST API
|
24 |
client_options={
|
25 |
+
'api_endpoint': "https://generativelanguage.googleapis.com/v1beta/models/gemini-pro:generateContent"
|
26 |
}
|
27 |
)
|
28 |
|
|
|
33 |
self.dataset_loaded = False
|
34 |
self.loading_error = None
|
35 |
|
36 |
+
print("Initializing embedding model...")
|
37 |
try:
|
38 |
self.embedding_model = SentenceTransformer(MODEL_NAME)
|
39 |
+
print("Embedding model initialized successfully")
|
40 |
except Exception as e:
|
41 |
+
error_msg = f"Failed to initialize embedding model: {str(e)}"
|
42 |
+
print(error_msg)
|
43 |
+
raise RuntimeError(error_msg)
|
44 |
|
45 |
+
print("Loading dataset...")
|
46 |
self.load_dataset()
|
47 |
|
48 |
def load_dataset(self):
|
49 |
+
"""Load dataset with detailed error handling"""
|
50 |
try:
|
51 |
+
print(f"Downloading dataset: {DATASET_NAME}")
|
52 |
dataset = load_dataset(
|
53 |
DATASET_NAME,
|
54 |
split='train',
|
55 |
download_mode="force_redownload"
|
56 |
)
|
57 |
+
print("Dataset downloaded successfully")
|
58 |
|
59 |
if 'text' in dataset.features:
|
60 |
+
self.chunks = dataset['text'][:1000]
|
61 |
+
print(f"Loaded {len(self.chunks)} text chunks")
|
62 |
elif 'context' in dataset.features:
|
63 |
self.chunks = dataset['context'][:1000]
|
64 |
+
print(f"Loaded {len(self.chunks)} context chunks")
|
65 |
else:
|
66 |
raise ValueError("Dataset must have 'text' or 'context' field")
|
67 |
|
68 |
+
print("Creating embeddings...")
|
69 |
embeddings = self.embedding_model.encode(
|
70 |
self.chunks,
|
71 |
show_progress_bar=False,
|
72 |
convert_to_numpy=True
|
73 |
)
|
74 |
+
print(f"Created embeddings with shape {embeddings.shape}")
|
75 |
+
|
76 |
self.index = faiss.IndexFlatL2(embeddings.shape[1])
|
77 |
self.index.add(embeddings.astype('float32'))
|
78 |
+
print("FAISS index created successfully")
|
79 |
|
80 |
self.dataset_loaded = True
|
81 |
+
print("Dataset loading complete")
|
82 |
except Exception as e:
|
83 |
+
error_msg = f"Dataset loading failed: {str(e)}"
|
84 |
+
print(error_msg)
|
85 |
+
self.loading_error = error_msg
|
86 |
|
87 |
def get_relevant_context(self, query: str) -> str:
|
88 |
+
"""Retrieve context with debugging"""
|
89 |
if not self.index:
|
90 |
+
print("No index available for search")
|
91 |
return ""
|
92 |
|
93 |
try:
|
94 |
+
print(f"Processing query: {query}")
|
95 |
query_embed = self.embedding_model.encode(
|
96 |
[query],
|
97 |
convert_to_numpy=True
|
98 |
).astype('float32')
|
99 |
+
print("Query embedded successfully")
|
100 |
+
|
101 |
+
distances, indices = self.index.search(query_embed, k=TOP_K)
|
102 |
+
print(f"Search results - distances: {distances}, indices: {indices}")
|
103 |
|
104 |
+
context = "\n\n".join([self.chunks[i] for i in indices[0] if i < len(self.chunks)])
|
105 |
+
print(f"Context length: {len(context)} characters")
|
106 |
+
return context
|
107 |
except Exception as e:
|
108 |
print(f"Search error: {str(e)}")
|
109 |
return ""
|
110 |
|
111 |
def generate_response(self, query: str) -> str:
|
112 |
+
"""Generate response with detailed error handling"""
|
113 |
if not self.dataset_loaded:
|
114 |
+
msg = f"⚠️ Dataset loading failed: {self.loading_error}" if self.loading_error else "⚠️ System initializing..."
|
115 |
+
print(msg)
|
116 |
+
return msg
|
117 |
+
|
118 |
+
print(f"\n{'='*40}\nNew Query: {query}\n{'='*40}")
|
119 |
|
120 |
context = self.get_relevant_context(query)
|
121 |
if not context:
|
122 |
+
print("No relevant context found")
|
123 |
return "No relevant context found"
|
124 |
|
125 |
prompt = f"""Answer based on this context:
|
|
|
128 |
Question: {query}
|
129 |
Answer concisely:"""
|
130 |
|
131 |
+
print(f"\nPrompt sent to Gemini:\n{prompt}\n")
|
132 |
+
|
133 |
try:
|
134 |
model = genai.GenerativeModel(GENAI_MODEL)
|
135 |
response = model.generate_content(
|
136 |
prompt,
|
137 |
generation_config=genai.types.GenerationConfig(
|
138 |
+
temperature=0.3,
|
139 |
+
max_output_tokens=1000
|
140 |
)
|
141 |
)
|
142 |
|
143 |
+
print(f"Raw API response: {response}")
|
144 |
+
|
145 |
if response.candidates and response.candidates[0].content.parts:
|
146 |
+
answer = response.candidates[0].content.parts[0].text
|
147 |
+
print(f"Answer: {answer}")
|
148 |
+
return answer
|
149 |
+
print("⚠️ Empty response from API")
|
150 |
return "⚠️ No response from API"
|
151 |
except Exception as e:
|
152 |
+
error_msg = f"⚠️ API Error: {str(e)}"
|
153 |
+
print(error_msg)
|
154 |
+
return error_msg
|
155 |
|
156 |
+
# Initialize system with verbose logging
|
157 |
+
print("Initializing RAG system...")
|
158 |
try:
|
159 |
rag_system = GeminiRAGSystem()
|
160 |
init_status = "✅ System ready" if rag_system.dataset_loaded else f"⚠️ Initializing... {rag_system.loading_error or ''}"
|
161 |
+
print(init_status)
|
162 |
except Exception as e:
|
163 |
init_status = f"❌ Initialization failed: {str(e)}"
|
164 |
+
print(init_status)
|
165 |
rag_system = None
|
166 |
|
167 |
+
# Create interface with enhanced debugging
|
168 |
with gr.Blocks(title="Document Chatbot") as app:
|
169 |
gr.Markdown("# Document Chatbot with Gemini")
|
170 |
|
171 |
with gr.Row():
|
172 |
+
chatbot = gr.Chatbot(height=500, label="Chat History")
|
173 |
|
174 |
with gr.Row():
|
175 |
query = gr.Textbox(label="Your question", placeholder="Ask about the documents...")
|
|
|
178 |
submit_btn = gr.Button("Submit", variant="primary")
|
179 |
clear_btn = gr.Button("Clear", variant="secondary")
|
180 |
|
181 |
+
status = gr.Textbox(label="System Status", value=init_status, interactive=False)
|
182 |
|
183 |
def respond(message, chat_history):
|
184 |
+
print(f"\n{'='*40}\nUser Query: {message}\n{'='*40}")
|
185 |
if not rag_system:
|
186 |
+
error_msg = "System initialization failed"
|
187 |
+
print(error_msg)
|
188 |
+
return chat_history + [(message, error_msg)]
|
189 |
+
|
190 |
response = rag_system.generate_response(message)
|
191 |
return chat_history + [(message, response)]
|
192 |
|
193 |
def clear_chat():
|
194 |
+
print("Chat cleared")
|
195 |
return []
|
196 |
|
197 |
submit_btn.click(respond, [query, chatbot], [chatbot])
|
|
|
199 |
clear_btn.click(clear_chat, outputs=chatbot)
|
200 |
|
201 |
if __name__ == "__main__":
|
202 |
+
print("Launching Gradio interface...")
|
203 |
+
app.launch(debug=True)
|