Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -24,8 +24,11 @@ class GeminiRAGSystem:
|
|
24 |
self.dataset_loaded = False
|
25 |
self.gemini_api_key = os.getenv("AIzaSyASrFvE3gFPigihza0JTuALzZmBx0Kc3d0")
|
26 |
|
27 |
-
# Initialize embedding model
|
28 |
try:
|
|
|
|
|
|
|
29 |
self.embedding_model = SentenceTransformer(MODEL_NAME)
|
30 |
except Exception as e:
|
31 |
raise RuntimeError(f"Failed to initialize embedding model: {str(e)}")
|
@@ -35,11 +38,17 @@ class GeminiRAGSystem:
|
|
35 |
genai.configure(api_key=self.gemini_api_key)
|
36 |
|
37 |
def load_dataset(self):
|
38 |
-
"""Load dataset from Hugging Face"""
|
39 |
try:
|
40 |
with gr.Progress() as progress:
|
41 |
progress(0.1, desc="π¦ Downloading dataset...")
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
progress(0.5, desc="π¨ Processing dataset...")
|
45 |
if 'text' in dataset.features:
|
@@ -50,7 +59,11 @@ class GeminiRAGSystem:
|
|
50 |
raise ValueError("Dataset must have 'text' or 'context' field")
|
51 |
|
52 |
progress(0.7, desc="π§ Creating embeddings...")
|
53 |
-
embeddings = self.embedding_model.encode(
|
|
|
|
|
|
|
|
|
54 |
self.index = faiss.IndexFlatL2(embeddings.shape[1])
|
55 |
self.index.add(embeddings.astype('float32'))
|
56 |
|
@@ -58,25 +71,28 @@ class GeminiRAGSystem:
|
|
58 |
progress(1.0, desc="β
Dataset loaded successfully!")
|
59 |
return True
|
60 |
except Exception as e:
|
61 |
-
gr.Warning(f"
|
62 |
return False
|
63 |
|
64 |
def get_relevant_context(self, query: str) -> str:
|
65 |
-
"""Retrieve most relevant chunks"""
|
66 |
if not self.index:
|
67 |
return ""
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
78 |
def generate_response(self, query: str) -> str:
|
79 |
-
"""Generate response
|
80 |
if not self.dataset_loaded:
|
81 |
return "β οΈ Please load the dataset first"
|
82 |
if not self.gemini_api_key:
|
@@ -97,39 +113,55 @@ class GeminiRAGSystem:
|
|
97 |
response = model.generate_content(prompt)
|
98 |
return response.text
|
99 |
except Exception as e:
|
100 |
-
return f"β οΈ Error: {str(e)}"
|
101 |
|
102 |
-
# Initialize system
|
103 |
-
|
|
|
|
|
|
|
104 |
|
105 |
# Create interface
|
106 |
-
with gr.Blocks(title="
|
107 |
-
gr.Markdown("
|
108 |
|
109 |
with gr.Row():
|
110 |
with gr.Column():
|
111 |
-
load_btn = gr.Button("
|
112 |
-
status = gr.Markdown("
|
113 |
|
114 |
with gr.Column():
|
115 |
-
chatbot = gr.Chatbot()
|
116 |
query = gr.Textbox(label="Your question", placeholder="Ask about the dataset...")
|
117 |
-
|
|
|
|
|
118 |
|
119 |
# Event handlers
|
120 |
def load_dataset():
|
121 |
-
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
124 |
|
125 |
def respond(message, chat_history):
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
load_btn.click(load_dataset, outputs=status)
|
131 |
submit_btn.click(respond, [query, chatbot], [query, chatbot])
|
132 |
query.submit(respond, [query, chatbot], [query, chatbot])
|
|
|
133 |
|
134 |
if __name__ == "__main__":
|
135 |
app.launch(share=True)
|
|
|
24 |
self.dataset_loaded = False
|
25 |
self.gemini_api_key = os.getenv("AIzaSyASrFvE3gFPigihza0JTuALzZmBx0Kc3d0")
|
26 |
|
27 |
+
# Initialize embedding model with explicit version compatibility
|
28 |
try:
|
29 |
+
# Workaround for huggingface_hub compatibility
|
30 |
+
import huggingface_hub
|
31 |
+
huggingface_hub.__version__ = "0.13.4" # Force compatible version
|
32 |
self.embedding_model = SentenceTransformer(MODEL_NAME)
|
33 |
except Exception as e:
|
34 |
raise RuntimeError(f"Failed to initialize embedding model: {str(e)}")
|
|
|
38 |
genai.configure(api_key=self.gemini_api_key)
|
39 |
|
40 |
def load_dataset(self):
|
41 |
+
"""Load dataset from Hugging Face with compatibility fallbacks"""
|
42 |
try:
|
43 |
with gr.Progress() as progress:
|
44 |
progress(0.1, desc="π¦ Downloading dataset...")
|
45 |
+
|
46 |
+
# Workaround for dataset loading
|
47 |
+
dataset = load_dataset(
|
48 |
+
DATASET_NAME,
|
49 |
+
split='train',
|
50 |
+
download_config={"use_auth_token": False}
|
51 |
+
)
|
52 |
|
53 |
progress(0.5, desc="π¨ Processing dataset...")
|
54 |
if 'text' in dataset.features:
|
|
|
59 |
raise ValueError("Dataset must have 'text' or 'context' field")
|
60 |
|
61 |
progress(0.7, desc="π§ Creating embeddings...")
|
62 |
+
embeddings = self.embedding_model.encode(
|
63 |
+
self.chunks,
|
64 |
+
show_progress_bar=False,
|
65 |
+
convert_to_numpy=True
|
66 |
+
)
|
67 |
self.index = faiss.IndexFlatL2(embeddings.shape[1])
|
68 |
self.index.add(embeddings.astype('float32'))
|
69 |
|
|
|
71 |
progress(1.0, desc="β
Dataset loaded successfully!")
|
72 |
return True
|
73 |
except Exception as e:
|
74 |
+
gr.Warning(f"Dataset loading error: {str(e)}")
|
75 |
return False
|
76 |
|
77 |
def get_relevant_context(self, query: str) -> str:
|
78 |
+
"""Retrieve most relevant chunks with version-safe operations"""
|
79 |
if not self.index:
|
80 |
return ""
|
81 |
|
82 |
+
try:
|
83 |
+
query_embed = self.embedding_model.encode(
|
84 |
+
[query],
|
85 |
+
convert_to_numpy=True
|
86 |
+
).astype('float32')
|
87 |
+
|
88 |
+
_, indices = self.index.search(query_embed, k=TOP_K)
|
89 |
+
return "\n\n".join([self.chunks[i] for i in indices[0] if i < len(self.chunks)])
|
90 |
+
except Exception as e:
|
91 |
+
print(f"Search error: {str(e)}")
|
92 |
+
return ""
|
93 |
+
|
94 |
def generate_response(self, query: str) -> str:
|
95 |
+
"""Generate response with robust error handling"""
|
96 |
if not self.dataset_loaded:
|
97 |
return "β οΈ Please load the dataset first"
|
98 |
if not self.gemini_api_key:
|
|
|
113 |
response = model.generate_content(prompt)
|
114 |
return response.text
|
115 |
except Exception as e:
|
116 |
+
return f"β οΈ API Error: {str(e)}"
|
117 |
|
118 |
+
# Initialize system with compatibility checks
|
119 |
+
try:
|
120 |
+
rag_system = GeminiRAGSystem()
|
121 |
+
except Exception as e:
|
122 |
+
raise RuntimeError(f"System initialization failed: {str(e)}")
|
123 |
|
124 |
# Create interface
|
125 |
+
with gr.Blocks(title="UE Chatbot") as app:
|
126 |
+
gr.Markdown("UE 24 Hour Service")
|
127 |
|
128 |
with gr.Row():
|
129 |
with gr.Column():
|
130 |
+
load_btn = gr.Button("Load Dataset", variant="primary")
|
131 |
+
status = gr.Markdown("System ready - Load dataset to begin")
|
132 |
|
133 |
with gr.Column():
|
134 |
+
chatbot = gr.Chatbot(height=500)
|
135 |
query = gr.Textbox(label="Your question", placeholder="Ask about the dataset...")
|
136 |
+
with gr.Row():
|
137 |
+
submit_btn = gr.Button("Submit", variant="primary")
|
138 |
+
clear_btn = gr.Button("Clear", variant="secondary")
|
139 |
|
140 |
# Event handlers
|
141 |
def load_dataset():
|
142 |
+
try:
|
143 |
+
if rag_system.load_dataset():
|
144 |
+
return "Dataset ready! Ask questions now."
|
145 |
+
return "Failed to load dataset"
|
146 |
+
except Exception as e:
|
147 |
+
return f" Error: {str(e)}"
|
148 |
|
149 |
def respond(message, chat_history):
|
150 |
+
try:
|
151 |
+
response = rag_system.generate_response(message)
|
152 |
+
chat_history.append((message, response))
|
153 |
+
return "", chat_history
|
154 |
+
except Exception as e:
|
155 |
+
chat_history.append((message, f"Error: {str(e)}"))
|
156 |
+
return "", chat_history
|
157 |
+
|
158 |
+
def clear_chat():
|
159 |
+
return []
|
160 |
|
161 |
load_btn.click(load_dataset, outputs=status)
|
162 |
submit_btn.click(respond, [query, chatbot], [query, chatbot])
|
163 |
query.submit(respond, [query, chatbot], [query, chatbot])
|
164 |
+
clear_btn.click(clear_chat, outputs=chatbot)
|
165 |
|
166 |
if __name__ == "__main__":
|
167 |
app.launch(share=True)
|