File size: 5,130 Bytes
4227970
59bfaac
fa92574
 
 
 
 
4b02bb7
fa92574
 
 
4227970
fa92574
 
 
4b02bb7
fa92574
4b02bb7
fa92574
 
 
 
 
 
4b02bb7
 
fa92574
4b02bb7
fa92574
4b02bb7
fa92574
4b02bb7
fa92574
 
4b02bb7
fa92574
 
 
 
 
 
 
 
 
 
4227970
 
4b02bb7
ca60894
4227970
 
 
4b02bb7
4227970
4b02bb7
4227970
2b28b66
 
4227970
 
4b02bb7
 
 
 
4227970
2b28b66
4b02bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f54757c
 
b8e1c73
2251b3a
f54757c
b8e1c73
f54757c
b8e1c73
 
 
f54757c
a36d2f3
f54757c
 
 
 
 
 
 
 
 
 
a36d2f3
779faba
f54757c
 
 
 
 
 
 
fa92574
f54757c
a36d2f3
f54757c
 
63655e9
 
 
 
 
 
 
 
 
 
779faba
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
import streamlit as st
import json
from streamlit_option_menu import option_menu
from gemini_utility import (load_gemini_pro, gemini_pro_vision_responce)
from PIL import Image

# Setting the page config
st.set_page_config(
    page_title="GnosticDev AI",
    page_icon="馃",
    layout="centered",
    initial_sidebar_state="expanded",
)

# Funci贸n para guardar el historial en cookies
def save_chat_history(history):
    # Convertir el historial a un formato serializable
    serializable_history = []
    for message in history:
        serializable_history.append({
            "role": message.role,
            "text": message.parts[0].text
        })
    # Guardar en cookie
    st.session_state.cookie_chat_history = json.dumps(serializable_history)

# Funci贸n para cargar el historial desde cookies
def load_chat_history():
    if 'cookie_chat_history' in st.session_state:
        try:
            history = json.loads(st.session_state.cookie_chat_history)
            model = load_gemini_pro()
            chat = model.start_chat(history=[])
            # Reconstruir el historial
            if st.session_state.system_prompt:
                chat.send_message(st.session_state.system_prompt)
            for message in history:
                if message["role"] != "model" or not message["text"].startswith(st.session_state.system_prompt):
                    chat.send_message(message["text"])
            return chat
        except Exception as e:
            st.error(f"Error cargando el historial: {e}")
    return None

# Inicializar estados
if "system_prompt" not in st.session_state:
    st.session_state.system_prompt = st.session_state.get('cookie_system_prompt', "")

with st.sidebar:
    selected = option_menu(
        "GD AI",
        ["System Prompt", "Chatbot", "Image Captioning"],
        menu_icon="robot",
        icons=['gear', 'chat-dots-fill', 'image-fill'],
        default_index=0
    )
    
    # Bot贸n para borrar historial
    if st.button("Borrar Historial"):
        if 'cookie_chat_history' in st.session_state:
            del st.session_state.cookie_chat_history
        if 'chat_session' in st.session_state:
            del st.session_state.chat_session
        st.success("Historial borrado!")

def translate_role_to_streamlit(user_role):
    if user_role == "model":
        return "assistant"
    else:
        return user_role

if selected == "System Prompt":
    st.title("Configuraci贸n del System Prompt")
    
    new_system_prompt = st.text_area(
        "Ingresa las instrucciones para el AI (System Prompt)",
        value=st.session_state.system_prompt,
        height=300,
        help="Escribe aqu铆 las instrucciones que definir谩n el comportamiento del AI"
    )
    
    if st.button("Guardar System Prompt"):
        st.session_state.system_prompt = new_system_prompt
        st.session_state.cookie_system_prompt = new_system_prompt  # Guardar en cookie
        if "chat_session" in st.session_state:
            del st.session_state.chat_session
        st.success("System Prompt actualizado con 茅xito!")
        
    if st.session_state.system_prompt:
        st.markdown("### System Prompt Actual:")
        st.info(st.session_state.system_prompt)

elif selected == "Chatbot":
    model = load_gemini_pro()
    
    # Inicializar o cargar sesi贸n de chat
    if "chat_session" not in st.session_state:
        loaded_chat = load_chat_history()
        if loaded_chat:
            st.session_state.chat_session = loaded_chat
        else:
            st.session_state.chat_session = model.start_chat(history=[])
            if st.session_state.system_prompt:
                st.session_state.chat_session.send_message(st.session_state.system_prompt)

    st.title("Gnosticdev Chatbot")
    
    if st.session_state.system_prompt:
        with st.expander("Ver System Prompt actual"):
            st.info(st.session_state.system_prompt)
    
    # Mostrar historial
    for message in st.session_state.chat_session.history:
        with st.chat_message(translate_role_to_streamlit(message.role)):
            st.markdown(message.parts[0].text)

    # Campo de entrada
    user_prompt = st.chat_input("Preguntame algo...")
    if user_prompt:
        st.chat_message("user").markdown(user_prompt)
        gemini_response = st.session_state.chat_session.send_message(user_prompt)
        with st.chat_message("assistant"):
            st.markdown(gemini_response.text)
        
        # Guardar historial actualizado
        save_chat_history(st.session_state.chat_session.history)

elif selected == "Image Captioning":
    st.title("Image Caption Generation馃摳")
    upload_image = st.file_uploader("Upload an image...", type=["jpg", "jpeg", "png"])
    
    if upload_image and st.button("Generate"):
        image = Image.open(upload_image)
        col1, col2 = st.columns(2)
        with col1:
            st.image(image, caption="Uploaded Image", use_column_width=True)
        default_prompt = "Write a caption for this image"
        caption = gemini_pro_vision_responce(default_prompt, image)
        with col2:
            st.info(caption)