File size: 5,932 Bytes
4227970 59bfaac fa92574 ea092fd fa92574 509b02d fa92574 b6dc07e fa92574 4227970 fa92574 4d3eb50 fa92574 4b02bb7 fa92574 4d3eb50 fa92574 4b02bb7 fa92574 4b02bb7 fa92574 b6dc07e 4227970 4b02bb7 4227970 4b02bb7 4227970 2b28b66 ea092fd 4227970 4b02bb7 4227970 2b28b66 4b02bb7 b6dc07e 4b02bb7 ea092fd b6dc07e ea092fd b6dc07e ea092fd 4b02bb7 ea092fd b6dc07e 4b02bb7 ea092fd 4d3eb50 4b02bb7 f54757c 2251b3a f54757c b8e1c73 f54757c b8e1c73 b6dc07e a36d2f3 f54757c b6dc07e f54757c ea092fd b6dc07e f54757c b6dc07e f54757c a36d2f3 f54757c b6dc07e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import os
import streamlit as st
import json
import requests
import re
from bs4 import BeautifulSoup
from streamlit_option_menu import option_menu
from gemini_utility import (load_gemini_pro, gemini_pro_vision_responce)
from PIL import Image
# Configuraci贸n de la p谩gina
st.set_page_config(
page_title="GnosticDev AI",
page_icon="馃",
layout="centered",
initial_sidebar_state="expanded",
)
# Funci贸n para guardar el historial en cookies
def save_chat_history(history):
serializable_history = []
for message in history:
serializable_history.append({
"role": message.role,
"text": message.parts[0].text
})
st.session_state.cookie_chat_history = json.dumps(serializable_history)
# Funci贸n para cargar el historial desde cookies
def load_chat_history():
if 'cookie_chat_history' in st.session_state:
try:
history = json.loads(st.session_state.cookie_chat_history)
model = load_gemini_pro()
chat = model.start_chat(history=[])
if st.session_state.system_prompt:
chat.send_message(st.session_state.system_prompt)
for message in history:
if message["role"] != "model" or not message["text"].startswith(st.session_state.system_prompt):
chat.send_message(message["text"])
return chat
except Exception as e:
st.error(f"Error cargando el historial: {e}")
return None
# Inicializar estados
if "system_prompt" not in st.session_state:
st.session_state.system_prompt = st.session_state.get('cookie_system_prompt', "")
with st.sidebar:
selected = option_menu(
"GD AI",
["System Prompt", "Chatbot", "Image Captioning"],
menu_icon="robot",
icons=['gear', 'chat-dots-fill', 'image-fill'],
default_index=0
)
if st.button("Borrar Historial"):
if 'cookie_chat_history' in st.session_state:
del st.session_state.cookie_chat_history
if 'chat_session' in st.session_state:
del st.session_state.chat_session
st.success("Historial borrado!")
def translate_role_to_streamlit(user_role):
return "assistant" if user_role == "model" else user_role
def extract_urls(text):
url_pattern = r"(https?://\S+)"
urls = re.findall(url_pattern, text)
return urls
def fetch_url_content(url):
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
return response.text
except requests.exceptions.RequestException as e:
return f"Error al acceder a la URL '{url}': {e}"
def process_url_content(content):
try:
soup = BeautifulSoup(content, "html.parser")
text = soup.get_text(" ", strip=True)
return text
except Exception as e:
return f"Error al procesar el contenido HTML: {e}"
def process_urls_in_prompt(prompt):
urls = extract_urls(prompt)
new_prompt = prompt
for url in urls:
content = fetch_url_content(url)
if content.startswith("Error"):
new_prompt = new_prompt.replace(url, content)
else:
processed_content = process_url_content(content)
new_prompt = new_prompt.replace(url, processed_content)
return new_prompt
if st.button("Guardar System Prompt"):
processed_prompt = process_urls_in_prompt(new_system_prompt)
st.session_state.system_prompt = processed_prompt
st.session_state.cookie_system_prompt = processed_prompt
if "chat_session" in st.session_state:
del st.session_state.chat_session
st.success("System Prompt actualizado con 茅xito!")
if st.session_state.system_prompt:
st.markdown("### System Prompt Actual:")
st.info(st.session_state.system_prompt)
elif selected == "Chatbot":
model = load_gemini_pro()
if "chat_session" not in st.session_state:
loaded_chat = load_chat_history()
if loaded_chat:
st.session_state.chat_session = loaded_chat
else:
st.session_state.chat_session = model.start_chat(history=[])
if st.session_state.system_prompt:
st.session_state.chat_session.send_message(st.session_state.system_prompt)
st.title("Gnosticdev Chatbot")
if st.session_state.system_prompt:
with st.expander("Ver System Prompt actual"):
st.info(st.session_state.system_prompt)
for message in st.session_state.chat_session.history:
with st.chat_message(translate_role_to_streamlit(message.role)):
st.markdown(message.parts[0].text)
user_prompt = st.chat_input("Preg煤ntame algo...")
if user_prompt:
processed_user_prompt = process_urls_in_prompt(user_prompt)
st.chat_message("user").markdown(processed_user_prompt)
# Combina el System Prompt con la entrada del usuario
full_prompt = f"{st.session_state.system_prompt}\nUser: {processed_user_prompt}\nAI:"
gemini_response = st.session_state.chat_session.send_message(full_prompt)
with st.chat_message("assistant"):
st.markdown(gemini_response.text)
save_chat_history(st.session_state.chat_session.history)
elif selected == "Image Captioning":
st.title("Image Caption Generation馃摳")
upload_image = st.file_uploader("Upload an image...", type=["jpg", "jpeg", "png"])
if upload_image and st.button("Generate"):
image = Image.open(upload_image)
col1, col2 = st.columns(2)
with col1:
st.image(image, caption="Uploaded Image", use_column_width=True)
# Generar un subt铆tulo para la imagen
default_prompt = "Write a caption for this image"
caption = gemini_pro_vision_responce(default_prompt, image)
with col2:
st.info(caption)
# Fin del archivo
|