File size: 6,373 Bytes
4227970
59bfaac
fa92574
ea092fd
 
 
fa92574
ea092fd
fa92574
 
4b02bb7
fa92574
 
 
4227970
fa92574
 
 
ea092fd
fa92574
 
 
 
 
 
 
4b02bb7
fa92574
ea092fd
fa92574
4b02bb7
fa92574
4b02bb7
fa92574
 
 
 
 
 
 
 
 
 
 
 
ea092fd
4227970
4b02bb7
ca60894
4227970
 
 
4b02bb7
4227970
4b02bb7
4227970
2b28b66
ea092fd
4227970
4b02bb7
 
 
 
4227970
2b28b66
4b02bb7
 
 
 
 
 
ea092fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b02bb7
 
 
ea092fd
4b02bb7
 
ea092fd
4b02bb7
ea092fd
4b02bb7
ea092fd
 
 
4b02bb7
 
 
ea092fd
4b02bb7
 
 
 
ea092fd
4b02bb7
f54757c
2251b3a
f54757c
b8e1c73
f54757c
b8e1c73
 
 
f54757c
a36d2f3
f54757c
 
 
 
 
 
 
a36d2f3
f54757c
 
ea092fd
 
 
f54757c
 
 
a36d2f3
ea092fd
f54757c
 
63655e9
 
 
 
 
 
 
 
 
779faba
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import os
import streamlit as st
import json
import requests
import re
from bs4 import BeautifulSoup
from streamlit_option_menu import option_menu
from gemini_utility import (load_gemini_pro, gemini_pro_vision_responce) # Aseg煤rate de que este archivo existe y contiene las funciones
from PIL import Image

# Setting the page config
st.set_page_config(
    page_title="GnosticDev AI",
    page_icon="馃",
    layout="centered",
    initial_sidebar_state="expanded",
)

# Funci贸n para guardar el historial en cookies (sin cambios)
def save_chat_history(history):
    serializable_history = []
    for message in history:
        serializable_history.append({
            "role": message.role,
            "text": message.parts[0].text
        })
    st.session_state.cookie_chat_history = json.dumps(serializable_history)

# Funci贸n para cargar el historial desde cookies (sin cambios)
def load_chat_history():
    if 'cookie_chat_history' in st.session_state:
        try:
            history = json.loads(st.session_state.cookie_chat_history)
            model = load_gemini_pro()
            chat = model.start_chat(history=[])
            if st.session_state.system_prompt:
                chat.send_message(st.session_state.system_prompt)
            for message in history:
                if message["role"] != "model" or not message["text"].startswith(st.session_state.system_prompt):
                    chat.send_message(message["text"])
            return chat
        except Exception as e:
            st.error(f"Error cargando el historial: {e}")
    return None

# Inicializar estados (sin cambios)
if "system_prompt" not in st.session_state:
    st.session_state.system_prompt = st.session_state.get('cookie_system_prompt', "")

with st.sidebar:
    selected = option_menu(
        "GD AI",
        ["System Prompt", "Chatbot", "Image Captioning"],
        menu_icon="robot",
        icons=['gear', 'chat-dots-fill', 'image-fill'],
        default_index=0
    )

    if st.button("Borrar Historial"):
        if 'cookie_chat_history' in st.session_state:
            del st.session_state.cookie_chat_history
        if 'chat_session' in st.session_state:
            del st.session_state.chat_session
        st.success("Historial borrado!")

def translate_role_to_streamlit(user_role):
    if user_role == "model":
        return "assistant"
    else:
        return user_role


def extract_urls(text):
    url_pattern = r"(https?://\S+)"
    urls = re.findall(url_pattern, text)
    return urls

def fetch_url_content(url):
    try:
        response = requests.get(url, timeout=10)  # Agregar timeout para evitar bloqueos
        response.raise_for_status()
        return response.text
    except requests.exceptions.RequestException as e:
        return f"Error al acceder a la URL '{url}': {e}"

def process_url_content(content):
    try:
        soup = BeautifulSoup(content, "html.parser")
        # Extrae solo el texto del cuerpo principal, ignorando etiquetas de scripts y estilos
        text = soup.get_text(" ", strip=True)
        return text
    except Exception as e:
        return f"Error al procesar el contenido HTML: {e}"


def process_urls_in_prompt(prompt):
    urls = extract_urls(prompt)
    new_prompt = prompt
    for url in urls:
        content = fetch_url_content(url)
        if content.startswith("Error"): #Gestion de errores al obtener el contenido de la URL
            new_prompt = new_prompt.replace(url, content)
        else:
            processed_content = process_url_content(content)
            new_prompt = new_prompt.replace(url, processed_content)
    return new_prompt

if selected == "System Prompt":
    st.title("Configuraci贸n del System Prompt")
    new_system_prompt = st.text_area(
        "Ingresa las instrucciones para el AI (System Prompt), incluyendo URLs",
        value=st.session_state.system_prompt,
        height=300,
        help="Escribe aqu铆 las instrucciones que definir谩n el comportamiento del AI. Puedes incluir URLs."
    )

    if st.button("Guardar System Prompt"):
        processed_prompt = process_urls_in_prompt(new_system_prompt)
        st.session_state.system_prompt = processed_prompt
        st.session_state.cookie_system_prompt = processed_prompt
        if "chat_session" in st.session_state:
            del st.session_state.chat_session
        st.success("System Prompt actualizado con 茅xito!")

    if st.session_state.system_prompt:
        st.markdown("### System Prompt Actual:")
        st.info(st.session_state.system_prompt)


elif selected == "Chatbot":
    model = load_gemini_pro()
    if "chat_session" not in st.session_state:
        loaded_chat = load_chat_history()
        if loaded_chat:
            st.session_state.chat_session = loaded_chat
        else:
            st.session_state.chat_session = model.start_chat(history=[])
            if st.session_state.system_prompt:
                st.session_state.chat_session.send_message(st.session_state.system_prompt)

    st.title("Gnosticdev Chatbot")
    if st.session_state.system_prompt:
        with st.expander("Ver System Prompt actual"):
            st.info(st.session_state.system_prompt)
    for message in st.session_state.chat_session.history:
        with st.chat_message(translate_role_to_streamlit(message.role)):
            st.markdown(message.parts[0].text)

    user_prompt = st.chat_input("Preguntame algo...")
    if user_prompt:
        processed_user_prompt = process_urls_in_prompt(user_prompt)
        st.chat_message("user").markdown(processed_user_prompt)
        gemini_response = st.session_state.chat_session.send_message(processed_user_prompt)
        with st.chat_message("assistant"):
            st.markdown(gemini_response.text)
        save_chat_history(st.session_state.chat_session.history)


elif selected == "Image Captioning":
    st.title("Image Caption Generation馃摳")
    upload_image = st.file_uploader("Upload an image...", type=["jpg", "jpeg", "png"])
    if upload_image and st.button("Generate"):
        image = Image.open(upload_image)
        col1, col2 = st.columns(2)
        with col1:
            st.image(image, caption="Uploaded Image", use_column_width=True)
        default_prompt = "Write a caption for this image"
        caption = gemini_pro_vision_responce(default_prompt, image)
        with col2:
            st.info(caption)