File size: 6,459 Bytes
4227970
59bfaac
fa92574
2ee5564
 
 
fa92574
509b02d
fa92574
 
2ee5564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa92574
 
 
4227970
fa92574
 
 
2ee5564
 
 
fa92574
2ee5564
 
 
 
 
 
 
 
 
9dd3d1d
2ee5564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
300e083
4227970
 
 
2ee5564
4227970
4b02bb7
4227970
2b28b66
4b02bb7
2ee5564
 
 
 
 
 
 
 
 
 
9dd3d1d
2ee5564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b02bb7
 
f54757c
2251b3a
2ee5564
 
 
 
 
 
 
 
a36d2f3
f54757c
48344ea
f54757c
2ee5564
 
 
 
 
 
a36d2f3
f54757c
 
b6dc07e
2ee5564
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import streamlit as st
import json
import requests
import re
from bs4 import BeautifulSoup
from streamlit_option_menu import option_menu
from gemini_utility import (load_gemini_pro, gemini_pro_vision_responce)
from PIL import Image

# Ruta para guardar el System Prompt
SYSTEM_PROMPT_FILE = "system_prompt.json"

# Funci贸n para cargar el System Prompt desde el archivo
def load_system_prompt():
    if os.path.exists(SYSTEM_PROMPT_FILE):
        with open(SYSTEM_PROMPT_FILE, 'r') as f:
            return json.load(f).get("system_prompt", "")
    return ""

# Funci贸n para guardar el System Prompt en el archivo
def save_system_prompt(system_prompt):
    with open(SYSTEM_PROMPT_FILE, 'w') as f:
        json.dump({"system_prompt": system_prompt}, f)

# Setting the page config
st.set_page_config(
    page_title="GnosticDev AI",
    page_icon="馃",
    layout="centered",
    initial_sidebar_state="expanded",
)

# Cargar el System Prompt guardado
if "system_prompt" not in st.session_state:
    st.session_state.system_prompt = load_system_prompt()

# Funci贸n para guardar el historial en cookies
def save_chat_history(history):
    serializable_history = []
    for message in history:
        serializable_history.append({
            "role": message.role,
            "text": message.parts[0].text
        })
    st.session_state.cookie_chat_history = json.dumps(serializable_history)

# Funci贸n para cargar el historial desde cookies
def load_chat_history():
    if 'cookie_chat_history' in st.session_state:
        try:
            history = json.loads(st.session_state.cookie_chat_history)
            model = load_gemini_pro()
            chat = model.start_chat(history=[])
            # NO enviar el system_prompt al inicio aqu铆
            for message in history:
                if message["role"] != "model":
                    chat.send_message(message["text"])
            return chat
        except Exception as e:
            st.error(f"Error cargando el historial: {e}")
    return None

with st.sidebar:
    selected = option_menu(
        "GD AI",
        ["System Prompt", "Chatbot", "Image Captioning"],
        menu_icon="robot",
        icons=['gear', 'chat-dots-fill', 'image-fill'],
        default_index=0
    )

    if st.button("Borrar Historial"):
        if 'cookie_chat_history' in st.session_state:
            del st.session_state.cookie_chat_history
        if 'chat_session' in st.session_state:
            del st.session_state.chat_session
        st.success("Historial borrado!")

def translate_role_to_streamlit(user_role):
    if user_role == "model":
        return "assistant"
    else:
        return user_role

def extract_urls(text):
    url_pattern = r"(https?://\S+)"
    urls = re.findall(url_pattern, text)
    return urls

def fetch_url_content(url):
    try:
        response = requests.get(url, timeout=10)  # Agregar timeout para evitar bloqueos
        response.raise_for_status()
        return response.text
    except requests.exceptions.RequestException as e:
        return f"Error al acceder a la URL '{url}': {e}"

def process_url_content(content):
    try:
        soup = BeautifulSoup(content, "html.parser")
        # Extrae solo el texto del cuerpo principal, ignorando etiquetas de scripts y estilos
        text = soup.get_text(" ", strip=True)
        return text
    except Exception as e:
        return f"Error al procesar el contenido HTML: {e}"

def process_urls_in_prompt(prompt):
    urls = extract_urls(prompt)
    new_prompt = prompt
    for url in urls:
        content = fetch_url_content(url)
        if content.startswith("Error"):  # Gestion de errores al obtener el contenido de la URL
            new_prompt = new_prompt.replace(url, content)
        else:
            processed_content = process_url_content(content)
            new_prompt = new_prompt.replace(url, processed_content)
    return new_prompt

if selected == "System Prompt":
    st.title("Configuraci贸n del System Prompt")
    new_system_prompt = st.text_area(
        "Ingresa las instrucciones para el AI (System Prompt), incluyendo URLs",
        value=st.session_state.system_prompt,
        height=300,
        help="Escribe aqu铆 las instrucciones que definir谩n el comportamiento del AI. Puedes incluir URLs."
    )

    if st.button("Guardar System Prompt"):
        processed_prompt = process_urls_in_prompt(new_system_prompt)
        st.session_state.system_prompt = processed_prompt
        save_system_prompt(processed_prompt)  # Guardar en archivo JSON
        if "chat_session" in st.session_state:
            del st.session_state.chat_session
        st.success("System Prompt actualizado con 茅xito!")

    if st.session_state.system_prompt:
        st.markdown("### System Prompt Actual:")
        st.info(st.session_state.system_prompt)

elif selected == "Chatbot":
    model = load_gemini_pro()
    if "chat_session" not in st.session_state:
        loaded_chat = load_chat_history()
        if loaded_chat:
            st.session_state.chat_session = loaded_chat
        else:
            # Iniciar el chat con un saludo o mensaje de bienvenida simple
            st.session_state.chat_session = model.start_chat(history=[])
            st.chat_message("assistant").markdown("隆Hola! 驴En qu茅 puedo ayudarte hoy?")
            # Solo se configura el behavior con el System Prompt, pero no se muestra en el inicio

    st.title("Gnosticdev Chatbot")
    user_prompt = st.chat_input("Preguntame algo...")
    if user_prompt:
        processed_user_prompt = process_urls_in_prompt(user_prompt)
        st.chat_message("user").markdown(processed_user_prompt)
        gemini_response = st.session_state.chat_session.send_message(processed_user_prompt)
        with st.chat_message("assistant"):
            st.markdown(gemini_response.text)
        save_chat_history(st.session_state.chat_session.history)

elif selected == "Image Captioning":
    st.title("Image Caption Generation馃摳")
    upload_image = st.file_uploader("Upload an image...", type=["jpg", "jpeg", "png"])
    if upload_image and st.button("Generate"):
        image = Image.open(upload_image)
        col1, col2 = st.columns(2)
        with col1:
            st.image(image, caption="Uploaded Image", use_column_width=True)
        default_prompt = "Write a caption for this image"
        caption = gemini_pro_vision_responce(default_prompt, image)
        with col2:
            st.info(caption)