Spaces:
Running
Running
File size: 7,029 Bytes
5fe16b1 b41ca3b 5fe16b1 587b534 5fe16b1 71a491a 5fe16b1 71a491a b41ca3b 71a491a b41ca3b 71a491a 5fe16b1 eb823dc 5fe16b1 71a491a eb823dc 71a491a eb823dc 71a491a 5fe16b1 b41ca3b 71a491a 5fe16b1 b41ca3b 885ea0a 5fe16b1 b41ca3b 587b534 5fe16b1 587b534 71a491a b41ca3b 5fe16b1 587b534 b41ca3b 587b534 b41ca3b 587b534 b41ca3b 587b534 b41ca3b 587b534 41484d1 5fe16b1 b41ca3b 71a491a 5fe16b1 71a491a b41ca3b 71a491a b41ca3b 41484d1 b41ca3b 71a491a b41ca3b 71a491a b41ca3b bf07215 b41ca3b b966575 b41ca3b b966575 0f9b00e b966575 0f9b00e b41ca3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
from dataclasses import dataclass
from typing import List, Tuple, Dict, Optional
import os
import json
import httpx
from openai import OpenAI
import edge_tts
import tempfile
from pydub import AudioSegment
import base64
from pathlib import Path
@dataclass
class ConversationConfig:
max_words: int = 3000
prefix_url: str = "https://r.jina.ai/"
model_name: str = "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo"
class URLToAudioConverter:
def __init__(self, config: ConversationConfig, llm_api_key: str):
self.config = config
self.llm_client = OpenAI(api_key=llm_api_key, base_url="https://api.together.xyz/v1")
self.llm_out = None
def fetch_text(self, url: str) -> str:
if not url:
raise ValueError("URL cannot be empty")
full_url = f"{self.config.prefix_url}{url}"
try:
response = httpx.get(full_url, timeout=60.0)
response.raise_for_status()
return response.text
except httpx.HTTPError as e:
raise RuntimeError(f"Failed to fetch URL: {e}")
def extract_conversation(self, text: str) -> Dict:
if not text:
raise ValueError("Input text cannot be empty")
try:
prompt = (
f"{text}\nConvert the provided text into a short informative podcast conversation "
f"between two experts. Return ONLY a JSON object with the following structure:\n"
'{"conversation": [{"speaker": "Speaker1", "text": "..."}, {"speaker": "Speaker2", "text": "..."}]}'
)
chat_completion = self.llm_client.chat.completions.create(
messages=[{"role": "user", "content": prompt}],
model=self.config.model_name,
response_format={"type": "json_object"}
)
response_content = chat_completion.choices[0].message.content
json_str = response_content.strip()
if not json_str.startswith('{'):
json_str = json_str[json_str.find('{'):]
if not json_str.endswith('}'):
json_str = json_str[:json_str.rfind('}')+1]
return json.loads(json_str)
except Exception as e:
raise RuntimeError(f"Failed to extract conversation: {str(e)}")
async def text_to_speech(self, conversation_json: Dict, voice_1: str, voice_2: str) -> Tuple[List[str], str]:
output_dir = Path(self._create_output_directory())
filenames = []
try:
for i, turn in enumerate(conversation_json["conversation"]):
filename = output_dir / f"output_{i}.mp3"
voice = voice_1 if i % 2 == 0 else voice_2
tmp_path, error = await self._generate_audio(turn["text"], voice)
if error:
raise RuntimeError(f"Text-to-speech failed: {error}")
os.rename(tmp_path, filename)
filenames.append(str(filename))
return filenames, str(output_dir)
except Exception as e:
raise RuntimeError(f"Failed to convert text to speech: {e}")
async def _generate_audio(self, text: str, voice: str, rate: int = 0, pitch: int = 0) -> Tuple[str, Optional[str]]:
if not text.strip():
return None, "Text cannot be empty"
voice_short_name = voice.split(" - ")[0]
communicate = edge_tts.Communicate(
text,
voice_short_name,
rate=f"{rate:+d}%",
pitch=f"{pitch:+d}Hz"
)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path, None
def _create_output_directory(self) -> str:
folder_name = base64.urlsafe_b64encode(os.urandom(8)).decode("utf-8")
os.makedirs(folder_name, exist_ok=True)
return folder_name
def combine_audio_files(self, filenames: List[str]) -> AudioSegment:
if not filenames:
raise ValueError("No input files provided")
combined = AudioSegment.empty()
for filename in filenames:
combined += AudioSegment.from_file(filename, format="mp3")
return combined
def add_background_music_and_tags(
self,
speech_audio: AudioSegment,
music_file: str,
tags_files: List[str]
) -> AudioSegment:
music = AudioSegment.from_file(music_file)
if len(music) < len(speech_audio):
music = music * (len(speech_audio) // len(music) + 1)
music = music[:len(speech_audio)] - 20
mixed = speech_audio.overlay(music)
for tag_path in tags_files:
tag_audio = AudioSegment.from_file(tag_path) - 5
mixed = tag_audio + mixed
return mixed
async def url_to_audio(self, url: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
text = self.fetch_text(url)
if len(words := text.split()) > self.config.max_words:
text = " ".join(words[:self.config.max_words])
conversation_json = self.extract_conversation(text)
conversation_text = "\n".join(
f"{turn['speaker']}: {turn['text']}"
for turn in conversation_json["conversation"]
)
return await self._process_audio(conversation_json, voice_1, voice_2, conversation_text)
async def text_to_audio(self, structured_text: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
"""Para texto YA estructurado como JSON de conversación."""
conversation_json = self.extract_conversation(structured_text)
conversation_text = "\n".join(
f"{turn['speaker']}: {turn['text']}"
for turn in conversation_json["conversation"]
)
return await self._process_audio(conversation_json, voice_1, voice_2, conversation_text)
async def raw_text_to_audio(self, raw_text: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
"""Para texto plano directo (sin estructura de diálogo)."""
fake_conversation = {"conversation": [{"speaker": "Narrador", "text": raw_text}]}
return await self._process_audio(fake_conversation, voice_1, voice_2, raw_text)
async def _process_audio(
self,
conversation_json: Dict,
voice_1: str,
voice_2: str,
text: str
) -> Tuple[str, str]:
"""Método interno para procesamiento común."""
audio_files, folder_name = await self.text_to_speech(conversation_json, voice_1, voice_2)
combined_audio = self.combine_audio_files(audio_files)
final_audio = self.add_background_music_and_tags(
combined_audio,
"musica.mp3",
["tag.mp3", "tag2.mp3"]
)
output_file = os.path.join(folder_name, "output.mp3")
final_audio.export(output_file, format="mp3")
for f in audio_files:
os.remove(f)
return output_file, text |