File size: 7,029 Bytes
5fe16b1
b41ca3b
5fe16b1
 
587b534
5fe16b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71a491a
 
 
 
 
 
 
5fe16b1
 
71a491a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b41ca3b
71a491a
b41ca3b
71a491a
 
 
5fe16b1
 
eb823dc
5fe16b1
71a491a
 
eb823dc
71a491a
 
 
 
 
eb823dc
 
71a491a
 
5fe16b1
b41ca3b
71a491a
 
5fe16b1
b41ca3b
 
 
 
 
 
885ea0a
5fe16b1
 
 
 
 
b41ca3b
587b534
 
5fe16b1
587b534
71a491a
 
b41ca3b
 
 
 
5fe16b1
587b534
b41ca3b
 
 
 
587b534
 
 
b41ca3b
 
587b534
b41ca3b
587b534
b41ca3b
587b534
 
41484d1
5fe16b1
b41ca3b
71a491a
5fe16b1
71a491a
b41ca3b
 
71a491a
b41ca3b
41484d1
b41ca3b
 
 
71a491a
b41ca3b
 
71a491a
b41ca3b
 
 
 
 
 
bf07215
b41ca3b
 
 
 
 
 
 
 
 
b966575
b41ca3b
 
 
 
 
 
b966575
0f9b00e
b966575
0f9b00e
 
b41ca3b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
from dataclasses import dataclass
from typing import List, Tuple, Dict, Optional
import os
import json
import httpx
from openai import OpenAI
import edge_tts
import tempfile
from pydub import AudioSegment
import base64
from pathlib import Path

@dataclass
class ConversationConfig:
    max_words: int = 3000
    prefix_url: str = "https://r.jina.ai/"
    model_name: str = "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo"

class URLToAudioConverter:
    def __init__(self, config: ConversationConfig, llm_api_key: str):
        self.config = config
        self.llm_client = OpenAI(api_key=llm_api_key, base_url="https://api.together.xyz/v1")
        self.llm_out = None

    def fetch_text(self, url: str) -> str:
        if not url:
            raise ValueError("URL cannot be empty")
        full_url = f"{self.config.prefix_url}{url}"
        try:
            response = httpx.get(full_url, timeout=60.0)
            response.raise_for_status()
            return response.text
        except httpx.HTTPError as e:
            raise RuntimeError(f"Failed to fetch URL: {e}")

    def extract_conversation(self, text: str) -> Dict:
        if not text:
            raise ValueError("Input text cannot be empty")
        try:
            prompt = (
                f"{text}\nConvert the provided text into a short informative podcast conversation "
                f"between two experts. Return ONLY a JSON object with the following structure:\n"
                '{"conversation": [{"speaker": "Speaker1", "text": "..."}, {"speaker": "Speaker2", "text": "..."}]}'
            )
            chat_completion = self.llm_client.chat.completions.create(
                messages=[{"role": "user", "content": prompt}],
                model=self.config.model_name,
                response_format={"type": "json_object"}
            )
            response_content = chat_completion.choices[0].message.content
            json_str = response_content.strip()
            if not json_str.startswith('{'):
                json_str = json_str[json_str.find('{'):]
            if not json_str.endswith('}'):
                json_str = json_str[:json_str.rfind('}')+1]
            return json.loads(json_str)
        except Exception as e:
            raise RuntimeError(f"Failed to extract conversation: {str(e)}")

    async def text_to_speech(self, conversation_json: Dict, voice_1: str, voice_2: str) -> Tuple[List[str], str]:
        output_dir = Path(self._create_output_directory())
        filenames = []
        try:
            for i, turn in enumerate(conversation_json["conversation"]):
                filename = output_dir / f"output_{i}.mp3"
                voice = voice_1 if i % 2 == 0 else voice_2
                tmp_path, error = await self._generate_audio(turn["text"], voice)
                if error:
                    raise RuntimeError(f"Text-to-speech failed: {error}")
                os.rename(tmp_path, filename)
                filenames.append(str(filename))
            return filenames, str(output_dir)
        except Exception as e:
            raise RuntimeError(f"Failed to convert text to speech: {e}")

    async def _generate_audio(self, text: str, voice: str, rate: int = 0, pitch: int = 0) -> Tuple[str, Optional[str]]:
        if not text.strip():
            return None, "Text cannot be empty"
        voice_short_name = voice.split(" - ")[0]
        communicate = edge_tts.Communicate(
            text, 
            voice_short_name, 
            rate=f"{rate:+d}%", 
            pitch=f"{pitch:+d}Hz"
        )
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
            tmp_path = tmp_file.name
            await communicate.save(tmp_path)
        return tmp_path, None

    def _create_output_directory(self) -> str:
        folder_name = base64.urlsafe_b64encode(os.urandom(8)).decode("utf-8")
        os.makedirs(folder_name, exist_ok=True)
        return folder_name

    def combine_audio_files(self, filenames: List[str]) -> AudioSegment:
        if not filenames:
            raise ValueError("No input files provided")
        combined = AudioSegment.empty()
        for filename in filenames:
            combined += AudioSegment.from_file(filename, format="mp3")
        return combined

    def add_background_music_and_tags(
        self, 
        speech_audio: AudioSegment, 
        music_file: str, 
        tags_files: List[str]
    ) -> AudioSegment:
        music = AudioSegment.from_file(music_file)
        if len(music) < len(speech_audio):
            music = music * (len(speech_audio) // len(music) + 1)
        music = music[:len(speech_audio)] - 20
        mixed = speech_audio.overlay(music)
        for tag_path in tags_files:
            tag_audio = AudioSegment.from_file(tag_path) - 5
            mixed = tag_audio + mixed
        return mixed

    async def url_to_audio(self, url: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
        text = self.fetch_text(url)
        if len(words := text.split()) > self.config.max_words:
            text = " ".join(words[:self.config.max_words])
        conversation_json = self.extract_conversation(text)
        conversation_text = "\n".join(
            f"{turn['speaker']}: {turn['text']}" 
            for turn in conversation_json["conversation"]
        )
        return await self._process_audio(conversation_json, voice_1, voice_2, conversation_text)

    async def text_to_audio(self, structured_text: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
        """Para texto YA estructurado como JSON de conversación."""
        conversation_json = self.extract_conversation(structured_text)
        conversation_text = "\n".join(
            f"{turn['speaker']}: {turn['text']}" 
            for turn in conversation_json["conversation"]
        )
        return await self._process_audio(conversation_json, voice_1, voice_2, conversation_text)

    async def raw_text_to_audio(self, raw_text: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
        """Para texto plano directo (sin estructura de diálogo)."""
        fake_conversation = {"conversation": [{"speaker": "Narrador", "text": raw_text}]}
        return await self._process_audio(fake_conversation, voice_1, voice_2, raw_text)

    async def _process_audio(
        self, 
        conversation_json: Dict, 
        voice_1: str, 
        voice_2: str, 
        text: str
    ) -> Tuple[str, str]:
        """Método interno para procesamiento común."""
        audio_files, folder_name = await self.text_to_speech(conversation_json, voice_1, voice_2)
        combined_audio = self.combine_audio_files(audio_files)
        final_audio = self.add_background_music_and_tags(
            combined_audio,
            "musica.mp3",
            ["tag.mp3", "tag2.mp3"]
        )
        output_file = os.path.join(folder_name, "output.mp3")
        final_audio.export(output_file, format="mp3")
        
        for f in audio_files:
            os.remove(f)
            
        return output_file, text