Spaces:
Running
Running
File size: 7,517 Bytes
5fe16b1 15d0727 5fe16b1 885ea0a 5fe16b1 41484d1 5fe16b1 41484d1 5fe16b1 41484d1 5fe16b1 41484d1 5fe16b1 41484d1 5fe16b1 41484d1 5fe16b1 885ea0a 5fe16b1 885ea0a 5fe16b1 41484d1 5fe16b1 15d0727 41484d1 5fe16b1 15d0727 5fe16b1 885ea0a 41484d1 5fe16b1 41484d1 5fe16b1 41484d1 5fe16b1 63ea22a 41484d1 5fe16b1 885ea0a 5fe16b1 41484d1 15d0727 41484d1 885ea0a 41484d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
from dataclasses import dataclass
from typing import List, Tuple, Dict
import os
import re
import httpx
import json
from openai import OpenAI
import edge_tts
import tempfile
from pydub import AudioSegment
import base64
from pathlib import Path
import shutil # Importamos shutil para manejo de directorios
@dataclass
class ConversationConfig:
max_words: int = 3000
prefix_url: str = "https://r.jina.ai/"
model_name: str = "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo"
class URLToAudioConverter:
def __init__(self, config: ConversationConfig, llm_api_key: str):
self.config = config
self.llm_client = OpenAI(api_key=llm_api_key, base_url="https://api.together.xyz/v1")
self.llm_out = None
def fetch_text(self, url: str) -> str:
if not url:
raise ValueError("URL cannot be empty")
full_url = f"{self.config.prefix_url}{url}"
try:
response = httpx.get(full_url, timeout=60.0)
response.raise_for_status()
return response.text
except httpx.HTTPError as e:
raise RuntimeError(f"Failed to fetch URL: {e}")
def extract_conversation(self, text: str) -> Dict:
if not text:
raise ValueError("Input text cannot be empty")
try:
# Prompt mejorado para obtener JSON consistente
prompt = (
f"{text}\nConvert the provided text into a short informative podcast conversation "
f"between two experts. Return ONLY a JSON object with the following structure:\n"
'{"conversation": [{"speaker": "Speaker1", "text": "..."}, {"speaker": "Speaker2", "text": "..."}]}'
)
chat_completion = self.llm_client.chat.completions.create(
messages=[{"role": "user", "content": prompt}],
model=self.config.model_name,
response_format={"type": "json_object"} # Fuerza formato JSON
)
# Extracción robusta de JSON
response_content = chat_completion.choices[0].message.content
json_str = response_content.strip()
# Limpieza de texto alrededor del JSON
if not json_str.startswith('{'):
start = json_str.find('{')
if start != -1:
json_str = json_str[start:]
if not json_str.endswith('}'):
end = json_str.rfind('}')
if end != -1:
json_str = json_str[:end+1]
return json.loads(json_str)
except Exception as e:
# Debug: Imprime la respuesta del modelo para diagnóstico
print(f"Error en extract_conversation: {str(e)}")
print(f"Respuesta del modelo: {response_content}")
raise RuntimeError(f"Failed to extract conversation: {str(e)}")
async def text_to_speech(self, conversation_json: Dict, voice_1: str, voice_2: str) -> Tuple[List[str], str]:
output_dir = Path(self._create_output_directory())
filenames = []
try:
for i, turn in enumerate(conversation_json["conversation"]):
filename = output_dir / f"output_{i}.mp3"
voice = voice_1 if i % 2 == 0 else voice_2
tmp_path, error = await self._generate_audio(turn["text"], voice)
if error:
raise RuntimeError(f"Text-to-speech failed: {error}")
os.rename(tmp_path, filename)
filenames.append(str(filename))
return filenames, str(output_dir)
except Exception as e:
raise RuntimeError(f"Failed to convert text to speech: {e}")
async def _generate_audio(self, text: str, voice: str, rate: int = 0, pitch: int = 0) -> Tuple[str, str]:
if not text.strip():
return None, "Text cannot be empty"
if not voice:
return None, "Voice cannot be empty"
voice_short_name = voice.split(" - ")[0]
rate_str = f"{rate:+d}%"
pitch_str = f"{pitch:+d}Hz"
communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path, None
def _create_output_directory(self) -> str:
random_bytes = os.urandom(8)
folder_name = base64.urlsafe_b64encode(random_bytes).decode("utf-8")
os.makedirs(folder_name, exist_ok=True)
return folder_name
def combine_audio_files(self, filenames: List[str], output_file: str) -> None:
if not filenames:
raise ValueError("No input files provided")
try:
combined = AudioSegment.empty()
for filename in filenames:
audio_segment = AudioSegment.from_file(filename, format="mp3")
combined += audio_segment
combined.export(output_file, format="mp3")
# Limpieza mejorada y robusta
dir_path = os.path.dirname(filenames[0])
# Eliminar todos los archivos en el directorio
for file in os.listdir(dir_path):
file_path = os.path.join(dir_path, file)
if os.path.isfile(file_path):
try:
os.remove(file_path)
except Exception as e:
print(f"Warning: Could not remove file {file_path}: {str(e)}")
# Intentar eliminar el directorio (no crítico si falla)
try:
os.rmdir(dir_path)
except OSError as e:
print(f"Info: Could not remove directory {dir_path}: {str(e)}")
# No es crítico, el espacio puede continuar
except Exception as e:
raise RuntimeError(f"Failed to combine audio files: {e}")
async def url_to_audio(self, url: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
text = self.fetch_text(url)
words = text.split()
if len(words) > self.config.max_words:
text = " ".join(words[:self.config.max_words])
conversation_json = self.extract_conversation(text)
conversation_text = "\n".join(
f"{turn['speaker']}: {turn['text']}" for turn in conversation_json["conversation"]
)
self.llm_out = conversation_json
audio_files, folder_name = await self.text_to_speech(
conversation_json, voice_1, voice_2
)
final_output = os.path.join(folder_name, "combined_output.mp3")
self.combine_audio_files(audio_files, final_output)
return final_output, conversation_text
async def text_to_audio(self, text: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
"""Método para procesar texto directo"""
conversation_json = self.extract_conversation(text)
conversation_text = "\n".join(
f"{turn['speaker']}: {turn['text']}" for turn in conversation_json["conversation"]
)
audio_files, folder_name = await self.text_to_speech(
conversation_json, voice_1, voice_2
)
final_output = os.path.join(folder_name, "combined_output.mp3")
self.combine_audio_files(audio_files, final_output)
return final_output, conversation_text |