File size: 7,517 Bytes
5fe16b1
15d0727
5fe16b1
 
 
 
 
 
 
 
 
 
885ea0a
5fe16b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41484d1
 
 
 
 
 
 
5fe16b1
41484d1
5fe16b1
41484d1
5fe16b1
41484d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fe16b1
41484d1
 
 
 
5fe16b1
 
 
 
41484d1
5fe16b1
 
885ea0a
5fe16b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
885ea0a
5fe16b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41484d1
5fe16b1
15d0727
41484d1
5fe16b1
15d0727
5fe16b1
885ea0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41484d1
5fe16b1
 
 
41484d1
5fe16b1
 
 
 
41484d1
5fe16b1
 
63ea22a
41484d1
 
5fe16b1
 
 
 
 
885ea0a
5fe16b1
41484d1
 
 
15d0727
41484d1
 
 
 
 
 
 
885ea0a
41484d1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from dataclasses import dataclass
from typing import List, Tuple, Dict
import os
import re
import httpx
import json
from openai import OpenAI
import edge_tts
import tempfile
from pydub import AudioSegment
import base64
from pathlib import Path
import shutil  # Importamos shutil para manejo de directorios

@dataclass
class ConversationConfig:
    max_words: int = 3000
    prefix_url: str = "https://r.jina.ai/"
    model_name: str = "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo"

class URLToAudioConverter:
    def __init__(self, config: ConversationConfig, llm_api_key: str):
        self.config = config
        self.llm_client = OpenAI(api_key=llm_api_key, base_url="https://api.together.xyz/v1")
        self.llm_out = None

    def fetch_text(self, url: str) -> str:
        if not url:
            raise ValueError("URL cannot be empty")

        full_url = f"{self.config.prefix_url}{url}"
        try:
            response = httpx.get(full_url, timeout=60.0)
            response.raise_for_status()
            return response.text
        except httpx.HTTPError as e:
            raise RuntimeError(f"Failed to fetch URL: {e}")

    def extract_conversation(self, text: str) -> Dict:
        if not text:
            raise ValueError("Input text cannot be empty")

        try:
            # Prompt mejorado para obtener JSON consistente
            prompt = (
                f"{text}\nConvert the provided text into a short informative podcast conversation "
                f"between two experts. Return ONLY a JSON object with the following structure:\n"
                '{"conversation": [{"speaker": "Speaker1", "text": "..."}, {"speaker": "Speaker2", "text": "..."}]}'
            )
            
            chat_completion = self.llm_client.chat.completions.create(
                messages=[{"role": "user", "content": prompt}],
                model=self.config.model_name,
                response_format={"type": "json_object"}  # Fuerza formato JSON
            )
            
            # Extracción robusta de JSON
            response_content = chat_completion.choices[0].message.content
            json_str = response_content.strip()
            
            # Limpieza de texto alrededor del JSON
            if not json_str.startswith('{'):
                start = json_str.find('{')
                if start != -1:
                    json_str = json_str[start:]
            
            if not json_str.endswith('}'):
                end = json_str.rfind('}')
                if end != -1:
                    json_str = json_str[:end+1]
            
            return json.loads(json_str)
        except Exception as e:
            # Debug: Imprime la respuesta del modelo para diagnóstico
            print(f"Error en extract_conversation: {str(e)}")
            print(f"Respuesta del modelo: {response_content}")
            raise RuntimeError(f"Failed to extract conversation: {str(e)}")

    async def text_to_speech(self, conversation_json: Dict, voice_1: str, voice_2: str) -> Tuple[List[str], str]:
        output_dir = Path(self._create_output_directory())
        filenames = []
        
        try:
            for i, turn in enumerate(conversation_json["conversation"]):
                filename = output_dir / f"output_{i}.mp3"
                voice = voice_1 if i % 2 == 0 else voice_2

                tmp_path, error = await self._generate_audio(turn["text"], voice)
                if error:
                    raise RuntimeError(f"Text-to-speech failed: {error}")

                os.rename(tmp_path, filename)
                filenames.append(str(filename))

            return filenames, str(output_dir)
        except Exception as e:
            raise RuntimeError(f"Failed to convert text to speech: {e}")

    async def _generate_audio(self, text: str, voice: str, rate: int = 0, pitch: int = 0) -> Tuple[str, str]:
        if not text.strip():
            return None, "Text cannot be empty"
        if not voice:
            return None, "Voice cannot be empty"

        voice_short_name = voice.split(" - ")[0]
        rate_str = f"{rate:+d}%"
        pitch_str = f"{pitch:+d}Hz"
        communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str)

        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
            tmp_path = tmp_file.name
            await communicate.save(tmp_path)

        return tmp_path, None

    def _create_output_directory(self) -> str:
        random_bytes = os.urandom(8)
        folder_name = base64.urlsafe_b64encode(random_bytes).decode("utf-8")
        os.makedirs(folder_name, exist_ok=True)
        return folder_name

    def combine_audio_files(self, filenames: List[str], output_file: str) -> None:
        if not filenames:
            raise ValueError("No input files provided")

        try:
            combined = AudioSegment.empty()
            for filename in filenames:
                audio_segment = AudioSegment.from_file(filename, format="mp3")
                combined += audio_segment

            combined.export(output_file, format="mp3")

            # Limpieza mejorada y robusta
            dir_path = os.path.dirname(filenames[0])
            
            # Eliminar todos los archivos en el directorio
            for file in os.listdir(dir_path):
                file_path = os.path.join(dir_path, file)
                if os.path.isfile(file_path):
                    try:
                        os.remove(file_path)
                    except Exception as e:
                        print(f"Warning: Could not remove file {file_path}: {str(e)}")
            
            # Intentar eliminar el directorio (no crítico si falla)
            try:
                os.rmdir(dir_path)
            except OSError as e:
                print(f"Info: Could not remove directory {dir_path}: {str(e)}")
                # No es crítico, el espacio puede continuar
                
        except Exception as e:
            raise RuntimeError(f"Failed to combine audio files: {e}")

    async def url_to_audio(self, url: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
        text = self.fetch_text(url)

        words = text.split()
        if len(words) > self.config.max_words:
            text = " ".join(words[:self.config.max_words])

        conversation_json = self.extract_conversation(text)
        conversation_text = "\n".join(
            f"{turn['speaker']}: {turn['text']}" for turn in conversation_json["conversation"]
        )
        self.llm_out = conversation_json
        audio_files, folder_name = await self.text_to_speech(
            conversation_json, voice_1, voice_2
        )

        final_output = os.path.join(folder_name, "combined_output.mp3")
        self.combine_audio_files(audio_files, final_output)
        return final_output, conversation_text

    async def text_to_audio(self, text: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
        """Método para procesar texto directo"""
        conversation_json = self.extract_conversation(text)
        conversation_text = "\n".join(
            f"{turn['speaker']}: {turn['text']}" for turn in conversation_json["conversation"]
        )
        audio_files, folder_name = await self.text_to_speech(
            conversation_json, voice_1, voice_2
        )
        final_output = os.path.join(folder_name, "combined_output.mp3")
        self.combine_audio_files(audio_files, final_output)
        return final_output, conversation_text