Spaces:
Running
Running
File size: 6,482 Bytes
5fe16b1 b41ca3b 5fe16b1 587b534 5fe16b1 00b6284 5fe16b1 71a491a 5fe16b1 71a491a 00b6284 71a491a 00b6284 71a491a 00b6284 71a491a 5fe16b1 eb823dc 5fe16b1 71a491a 00b6284 71a491a eb823dc 71a491a 00b6284 5fe16b1 00b6284 71a491a 00b6284 b41ca3b 00b6284 b41ca3b 885ea0a 00b6284 5fe16b1 b41ca3b 587b534 5fe16b1 587b534 71a491a 00b6284 b41ca3b 5fe16b1 587b534 00b6284 587b534 64bc311 587b534 64bc311 00b6284 64bc311 00b6284 64bc311 00b6284 64bc311 00b6284 bf07215 64bc311 00b6284 64bc311 00b6284 64bc311 b41ca3b 64bc311 00b6284 64bc311 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
from dataclasses import dataclass
from typing import List, Tuple, Dict, Optional
import os
import json
import httpx
from openai import OpenAI
import edge_tts
import tempfile
from pydub import AudioSegment
import base64
from pathlib import Path
@dataclass
class ConversationConfig:
max_words: int = 3000
prefix_url: str = "https://r.jina.ai/"
model_name: str = "meta-llama/Meta-Llama-3-8B-Instruct"
class URLToAudioConverter:
def __init__(self, config: ConversationConfig, llm_api_key: str):
self.config = config
self.llm_client = OpenAI(api_key=llm_api_key, base_url="https://api.together.xyz/v1")
self.llm_out = None
def fetch_text(self, url: str) -> str:
if not url:
raise ValueError("URL cannot be empty")
full_url = f"{self.config.prefix_url}{url}"
try:
response = httpx.get(full_url, timeout=60.0)
response.raise_for_status()
return response.text
except httpx.HTTPError as e:
raise RuntimeError(f"Failed to fetch URL: {e}")
def extract_conversation(self, text: str) -> Dict:
if not text:
raise ValueError("Input text cannot be empty")
try:
prompt = (
f"{text}\nConvert this text into a podcast conversation between two hosts. "
"Return ONLY JSON with this structure:\n"
'{"conversation": [{"speaker": "Host1", "text": "..."}, {"speaker": "Host2", "text": "..."}]}'
)
response = self.llm_client.chat.completions.create(
messages=[{"role": "user", "content": prompt}],
model=self.config.model_name,
response_format={"type": "json_object"}
)
json_str = response.choices[0].message.content.strip()
return json.loads(json_str[json_str.find('{'):json_str.rfind('}')+1])
except Exception as e:
raise RuntimeError(f"Failed to extract conversation: {str(e)}")
async def text_to_speech(self, conversation_json: Dict, voice_1: str, voice_2: str) -> Tuple[List[str], str]:
output_dir = Path(self._create_output_directory())
filenames = []
try:
for i, turn in enumerate(conversation_json["conversation"]):
filename = output_dir / f"segment_{i}.mp3"
voice = voice_1 if turn["speaker"] == "Host1" else voice_2
tmp_path = await self._generate_audio(turn["text"], voice)
os.rename(tmp_path, filename)
filenames.append(str(filename))
return filenames, str(output_dir)
except Exception as e:
raise RuntimeError(f"Text-to-speech failed: {e}")
async def _generate_audio(self, text: str, voice: str) -> str:
if not text.strip():
raise ValueError("Text cannot be empty")
communicate = edge_tts.Communicate(
text,
voice.split(" - ")[0],
rate="+0%",
pitch="+0Hz"
)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
await communicate.save(tmp_file.name)
return tmp_file.name
def _create_output_directory(self) -> str:
folder_name = base64.urlsafe_b64encode(os.urandom(8)).decode("utf-8")
os.makedirs(folder_name, exist_ok=True)
return folder_name
def combine_audio_files(self, filenames: List[str]) -> AudioSegment:
if not filenames:
raise ValueError("No audio files provided")
combined = AudioSegment.empty()
for filename in filenames:
combined += AudioSegment.from_file(filename, format="mp3")
return combined
def add_background_music_and_tags(
self,
speech_audio: AudioSegment,
music_path: str,
tags_paths: List[str]
) -> AudioSegment:
music = AudioSegment.from_file(music_path).fade_out(2000) - 25
if len(music) < len(speech_audio):
music = music * ((len(speech_audio) // len(music)) + 1)
music = music[:len(speech_audio)]
mixed = speech_audio.overlay(music)
tag_intro = AudioSegment.from_file(tags_paths[0]) - 10
tag_trans = AudioSegment.from_file(tags_paths[1]) - 10
final_audio = tag_intro + mixed
silent_ranges = []
for i in range(0, len(speech_audio) - 500, 100):
chunk = speech_audio[i:i+500]
if chunk.dBFS < -40:
silent_ranges.append((i, i + 500))
for start, end in reversed(silent_ranges):
if (end - start) >= len(tag_trans):
final_audio = final_audio.overlay(tag_trans, position=start + 50)
return final_audio
async def url_to_audio(self, url: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
text = self.fetch_text(url)
if len(words := text.split()) > self.config.max_words:
text = " ".join(words[:self.config.max_words])
conversation = self.extract_conversation(text)
return await self._process_to_audio(conversation, voice_1, voice_2)
async def text_to_audio(self, text: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
conversation = self.extract_conversation(text)
return await self._process_to_audio(conversation, voice_1, voice_2)
async def raw_text_to_audio(self, text: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
conversation = {"conversation": [{"speaker": "Narrator", "text": text}]}
return await self._process_to_audio(conversation, voice_1, voice_2)
async def _process_to_audio(
self,
conversation: Dict,
voice_1: str,
voice_2: str
) -> Tuple[str, str]:
audio_files, folder_name = await self.text_to_speech(conversation, voice_1, voice_2)
combined = self.combine_audio_files(audio_files)
final_audio = self.add_background_music_and_tags(
combined,
"musica.mp3",
["tag.mp3", "tag2.mp3"]
)
output_path = os.path.join(folder_name, "output.mp3")
final_audio.export(output_path, format="mp3")
for f in audio_files:
os.remove(f)
text_output = "\n".join(
f"{turn['speaker']}: {turn['text']}"
for turn in conversation["conversation"]
)
return output_path, text_output |