Spaces:
Running
Running
from dataclasses import dataclass | |
from typing import List, Tuple, Dict, Optional | |
import os | |
import json | |
import httpx | |
from openai import OpenAI | |
import edge_tts | |
import tempfile | |
from pydub import AudioSegment | |
import base64 | |
from pathlib import Path | |
import numpy as np | |
class ConversationConfig: | |
max_words: int = 3000 | |
prefix_url: str = "https://r.jina.ai/" | |
model_name: str = "meta-llama/Meta-Llama-3-8B-Instruct" | |
class URLToAudioConverter: | |
def __init__(self, config: ConversationConfig, llm_api_key: str): | |
self.config = config | |
self.llm_client = OpenAI(api_key=llm_api_key, base_url="https://api.together.xyz/v1") | |
self.llm_out = None | |
def fetch_text(self, url: str) -> str: | |
"""Obtiene texto desde una URL""" | |
if not url: | |
raise ValueError("URL cannot be empty") | |
full_url = f"{self.config.prefix_url}{url}" | |
try: | |
response = httpx.get(full_url, timeout=60.0) | |
response.raise_for_status() | |
return response.text | |
except httpx.HTTPError as e: | |
raise RuntimeError(f"Failed to fetch URL: {e}") | |
def extract_conversation(self, text: str) -> Dict: | |
"""Convierte texto plano a estructura de conversación""" | |
if not text: | |
raise ValueError("Input text cannot be empty") | |
try: | |
prompt = ( | |
f"{text}\nConvert this text into a podcast conversation between two hosts. " | |
"Return ONLY JSON with this structure:\n" | |
'{"conversation": [{"speaker": "Host1", "text": "..."}, {"speaker": "Host2", "text": "..."}]}' | |
) | |
response = self.llm_client.chat.completions.create( | |
messages=[{"role": "user", "content": prompt}], | |
model=self.config.model_name, | |
response_format={"type": "json_object"} | |
) | |
json_str = response.choices[0].message.content.strip() | |
return json.loads(json_str[json_str.find('{'):json_str.rfind('}')+1]) | |
except Exception as e: | |
raise RuntimeError(f"Failed to extract conversation: {str(e)}") | |
async def text_to_speech(self, conversation_json: Dict, voice_1: str, voice_2: str) -> Tuple[List[str], str]: | |
"""Convierte JSON de conversación a archivos de audio""" | |
output_dir = Path(self._create_output_directory()) | |
filenames = [] | |
try: | |
for i, turn in enumerate(conversation_json["conversation"]): | |
filename = output_dir / f"segment_{i}.mp3" | |
voice = voice_1 if turn["speaker"] == "Host1" else voice_2 | |
tmp_path = await self._generate_audio(turn["text"], voice) | |
os.rename(tmp_path, filename) | |
filenames.append(str(filename)) | |
return filenames, str(output_dir) | |
except Exception as e: | |
raise RuntimeError(f"Text-to-speech failed: {e}") | |
async def _generate_audio(self, text: str, voice: str) -> str: | |
"""Genera audio temporal con edge-tts""" | |
if not text.strip(): | |
raise ValueError("Text cannot be empty") | |
communicate = edge_tts.Communicate( | |
text, | |
voice.split(" - ")[0], | |
rate="+0%", | |
pitch="+0Hz" | |
) | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file: | |
await communicate.save(tmp_file.name) | |
return tmp_file.name | |
def _create_output_directory(self) -> str: | |
"""Crea directorio único para los archivos""" | |
folder_name = base64.urlsafe_b64encode(os.urandom(8)).decode("utf-8") | |
os.makedirs(folder_name, exist_ok=True) | |
return folder_name | |
def combine_audio_files(self, filenames: List[str]) -> AudioSegment: | |
"""Combina segmentos de audio""" | |
if not filenames: | |
raise ValueError("No audio files provided") | |
combined = AudioSegment.empty() | |
for filename in filenames: | |
combined += AudioSegment.from_file(filename, format="mp3") | |
return combined | |
def _detect_silences(self, audio: AudioSegment, min_len: int = 500, thresh: int = -40) -> List[Tuple[int, int]]: | |
"""Detecta intervalos de silencio en el audio""" | |
silent_ranges = [] | |
start = None | |
samples = np.array(audio.get_array_of_samples()) | |
window_size = int(min_len * audio.frame_rate / 1000) | |
for i in range(0, len(samples) - window_size, window_size): | |
window = samples[i:i+window_size] | |
if np.max(window) < thresh: | |
if start is None: | |
start = i | |
else: | |
if start is not None: | |
silent_ranges.append((start, i)) | |
start = None | |
return silent_ranges | |
def add_background_music_and_tags( | |
self, | |
speech_audio: AudioSegment, | |
music_path: str, | |
tags_paths: List[str] | |
) -> AudioSegment: | |
"""Mezcla música de fondo y tags inteligentemente""" | |
# 1. Cargar y ajustar música | |
music = AudioSegment.from_file(music_path).fade_out(2000) | |
music = music - 25 # Reducir volumen | |
# 2. Loop inteligente (solo si es necesario) | |
if len(music) < len(speech_audio): | |
loops = (len(speech_audio) // len(music)) + 1 | |
music = music * loops | |
music = music[:len(speech_audio)] | |
# 3. Mezclar voz y música | |
mixed = speech_audio.overlay(music, position=0) | |
# 4. Insertar tags | |
tag_intro = AudioSegment.from_file(tags_paths[0]) - 10 | |
tag_transition = AudioSegment.from_file(tags_paths[1]) - 10 | |
# Tag inicial | |
final_audio = tag_intro + mixed | |
# Tags en pausas (opcional) | |
silences = self._detect_silences(speech_audio) | |
for start, end in reversed(silences): | |
if (end - start) > len(tag_transition): | |
final_audio = final_audio.overlay( | |
tag_transition, | |
position=start + 100 # Pequeño margen | |
) | |
return final_audio | |
async def process_content( | |
self, | |
content: str, | |
voice_1: str, | |
voice_2: str, | |
is_url: bool = False | |
) -> Tuple[str, str]: | |
"""Procesa contenido (URL o texto) a audio final""" | |
try: | |
# 1. Obtener texto estructurado | |
if is_url: | |
text = self.fetch_text(content) | |
if len(words := text.split()) > self.config.max_words: | |
text = " ".join(words[:self.config.max_words]) | |
conversation = self.extract_conversation(text) | |
else: | |
conversation = self.extract_conversation(content) | |
# 2. Generar audio | |
audio_files, folder_name = await self.text_to_speech(conversation, voice_1, voice_2) | |
combined = self.combine_audio_files(audio_files) | |
# 3. Mezclar con música y tags | |
final_audio = self.add_background_music_and_tags( | |
combined, | |
"musica.mp3", | |
["tag.mp3", "tag2.mp3"] | |
) | |
# 4. Exportar | |
output_path = os.path.join(folder_name, "podcast_final.mp3") | |
final_audio.export(output_path, format="mp3") | |
# 5. Limpieza | |
for f in audio_files: | |
os.remove(f) | |
# Texto de conversación | |
conversation_text = "\n".join( | |
f"{turn['speaker']}: {turn['text']}" | |
for turn in conversation["conversation"] | |
) | |
return output_path, conversation_text | |
except Exception as e: | |
raise RuntimeError(f"Processing failed: {str(e)}") |