Podcastking2 / conver.py
gnosticdev's picture
Update conver.py
00b6284 verified
raw
history blame
7.94 kB
from dataclasses import dataclass
from typing import List, Tuple, Dict, Optional
import os
import json
import httpx
from openai import OpenAI
import edge_tts
import tempfile
from pydub import AudioSegment
import base64
from pathlib import Path
import numpy as np
@dataclass
class ConversationConfig:
max_words: int = 3000
prefix_url: str = "https://r.jina.ai/"
model_name: str = "meta-llama/Meta-Llama-3-8B-Instruct"
class URLToAudioConverter:
def __init__(self, config: ConversationConfig, llm_api_key: str):
self.config = config
self.llm_client = OpenAI(api_key=llm_api_key, base_url="https://api.together.xyz/v1")
self.llm_out = None
def fetch_text(self, url: str) -> str:
"""Obtiene texto desde una URL"""
if not url:
raise ValueError("URL cannot be empty")
full_url = f"{self.config.prefix_url}{url}"
try:
response = httpx.get(full_url, timeout=60.0)
response.raise_for_status()
return response.text
except httpx.HTTPError as e:
raise RuntimeError(f"Failed to fetch URL: {e}")
def extract_conversation(self, text: str) -> Dict:
"""Convierte texto plano a estructura de conversación"""
if not text:
raise ValueError("Input text cannot be empty")
try:
prompt = (
f"{text}\nConvert this text into a podcast conversation between two hosts. "
"Return ONLY JSON with this structure:\n"
'{"conversation": [{"speaker": "Host1", "text": "..."}, {"speaker": "Host2", "text": "..."}]}'
)
response = self.llm_client.chat.completions.create(
messages=[{"role": "user", "content": prompt}],
model=self.config.model_name,
response_format={"type": "json_object"}
)
json_str = response.choices[0].message.content.strip()
return json.loads(json_str[json_str.find('{'):json_str.rfind('}')+1])
except Exception as e:
raise RuntimeError(f"Failed to extract conversation: {str(e)}")
async def text_to_speech(self, conversation_json: Dict, voice_1: str, voice_2: str) -> Tuple[List[str], str]:
"""Convierte JSON de conversación a archivos de audio"""
output_dir = Path(self._create_output_directory())
filenames = []
try:
for i, turn in enumerate(conversation_json["conversation"]):
filename = output_dir / f"segment_{i}.mp3"
voice = voice_1 if turn["speaker"] == "Host1" else voice_2
tmp_path = await self._generate_audio(turn["text"], voice)
os.rename(tmp_path, filename)
filenames.append(str(filename))
return filenames, str(output_dir)
except Exception as e:
raise RuntimeError(f"Text-to-speech failed: {e}")
async def _generate_audio(self, text: str, voice: str) -> str:
"""Genera audio temporal con edge-tts"""
if not text.strip():
raise ValueError("Text cannot be empty")
communicate = edge_tts.Communicate(
text,
voice.split(" - ")[0],
rate="+0%",
pitch="+0Hz"
)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
await communicate.save(tmp_file.name)
return tmp_file.name
def _create_output_directory(self) -> str:
"""Crea directorio único para los archivos"""
folder_name = base64.urlsafe_b64encode(os.urandom(8)).decode("utf-8")
os.makedirs(folder_name, exist_ok=True)
return folder_name
def combine_audio_files(self, filenames: List[str]) -> AudioSegment:
"""Combina segmentos de audio"""
if not filenames:
raise ValueError("No audio files provided")
combined = AudioSegment.empty()
for filename in filenames:
combined += AudioSegment.from_file(filename, format="mp3")
return combined
def _detect_silences(self, audio: AudioSegment, min_len: int = 500, thresh: int = -40) -> List[Tuple[int, int]]:
"""Detecta intervalos de silencio en el audio"""
silent_ranges = []
start = None
samples = np.array(audio.get_array_of_samples())
window_size = int(min_len * audio.frame_rate / 1000)
for i in range(0, len(samples) - window_size, window_size):
window = samples[i:i+window_size]
if np.max(window) < thresh:
if start is None:
start = i
else:
if start is not None:
silent_ranges.append((start, i))
start = None
return silent_ranges
def add_background_music_and_tags(
self,
speech_audio: AudioSegment,
music_path: str,
tags_paths: List[str]
) -> AudioSegment:
"""Mezcla música de fondo y tags inteligentemente"""
# 1. Cargar y ajustar música
music = AudioSegment.from_file(music_path).fade_out(2000)
music = music - 25 # Reducir volumen
# 2. Loop inteligente (solo si es necesario)
if len(music) < len(speech_audio):
loops = (len(speech_audio) // len(music)) + 1
music = music * loops
music = music[:len(speech_audio)]
# 3. Mezclar voz y música
mixed = speech_audio.overlay(music, position=0)
# 4. Insertar tags
tag_intro = AudioSegment.from_file(tags_paths[0]) - 10
tag_transition = AudioSegment.from_file(tags_paths[1]) - 10
# Tag inicial
final_audio = tag_intro + mixed
# Tags en pausas (opcional)
silences = self._detect_silences(speech_audio)
for start, end in reversed(silences):
if (end - start) > len(tag_transition):
final_audio = final_audio.overlay(
tag_transition,
position=start + 100 # Pequeño margen
)
return final_audio
async def process_content(
self,
content: str,
voice_1: str,
voice_2: str,
is_url: bool = False
) -> Tuple[str, str]:
"""Procesa contenido (URL o texto) a audio final"""
try:
# 1. Obtener texto estructurado
if is_url:
text = self.fetch_text(content)
if len(words := text.split()) > self.config.max_words:
text = " ".join(words[:self.config.max_words])
conversation = self.extract_conversation(text)
else:
conversation = self.extract_conversation(content)
# 2. Generar audio
audio_files, folder_name = await self.text_to_speech(conversation, voice_1, voice_2)
combined = self.combine_audio_files(audio_files)
# 3. Mezclar con música y tags
final_audio = self.add_background_music_and_tags(
combined,
"musica.mp3",
["tag.mp3", "tag2.mp3"]
)
# 4. Exportar
output_path = os.path.join(folder_name, "podcast_final.mp3")
final_audio.export(output_path, format="mp3")
# 5. Limpieza
for f in audio_files:
os.remove(f)
# Texto de conversación
conversation_text = "\n".join(
f"{turn['speaker']}: {turn['text']}"
for turn in conversation["conversation"]
)
return output_path, conversation_text
except Exception as e:
raise RuntimeError(f"Processing failed: {str(e)}")