Spaces:
Running
Running
from dataclasses import dataclass | |
from typing import List, Tuple, Dict | |
import os | |
import json | |
import httpx | |
from openai import OpenAI | |
import edge_tts | |
import tempfile | |
from pydub import AudioSegment | |
import base64 | |
from pathlib import Path | |
class ConversationConfig: | |
max_words: int = 3000 | |
prefix_url: str = "https://r.jina.ai/" | |
model_name: str = "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo" | |
class URLToAudioConverter: | |
def __init__(self, config: ConversationConfig, llm_api_key: str): | |
self.config = config | |
self.llm_client = OpenAI(api_key=llm_api_key, base_url="https://api.together.xyz/v1") | |
self.llm_out = None | |
def fetch_text(self, url: str) -> str: | |
if not url: | |
raise ValueError("URL cannot be empty") | |
full_url = f"{self.config.prefix_url}{url}" | |
try: | |
response = httpx.get(full_url, timeout=60.0) | |
response.raise_for_status() | |
return response.text | |
except httpx.HTTPError as e: | |
raise RuntimeError(f"Failed to fetch URL: {e}") | |
def extract_conversation(self, text: str) -> Dict: | |
if not text: | |
raise ValueError("Input text cannot be empty") | |
try: | |
prompt = ( | |
f"{text}\nConvert the provided text into a short informative podcast conversation " | |
f"between two experts. Return ONLY a JSON object with the following structure:\n" | |
'{"conversation": [{"speaker": "Speaker1", "text": "..."}, {"speaker": "Speaker2", "text": "..."}]}' | |
) | |
chat_completion = self.llm_client.chat.completions.create( | |
messages=[{"role": "user", "content": prompt}], | |
model=self.config.model_name, | |
response_format={"type": "json_object"} | |
) | |
response_content = chat_completion.choices[0].message.content | |
json_str = response_content.strip() | |
if not json_str.startswith('{'): | |
start = json_str.find('{') | |
if start != -1: | |
json_str = json_str[start:] | |
if not json_str.endswith('}'): | |
end = json_str.rfind('}') | |
if end != -1: | |
json_str = json_str[:end+1] | |
return json.loads(json_str) | |
except Exception as e: | |
print(f"Error en extract_conversation: {str(e)}") | |
print(f"Respuesta del modelo: {response_content}") | |
raise RuntimeError(f"Failed to extract conversation: {str(e)}") | |
async def text_to_speech(self, conversation_json: Dict, voice_1: str, voice_2: str) -> Tuple[List[str], str]: | |
output_dir = Path(self._create_output_directory()) | |
filenames = [] | |
try: | |
for i, turn in enumerate(conversation_json["conversation"]): | |
filename = output_dir / f"output_{i}.mp3" | |
voice = voice_1 if i % 2 == 0 else voice_2 | |
tmp_path, error = await self._generate_audio(turn["text"], voice) | |
if error: | |
raise RuntimeError(f"Text-to-speech failed: {error}") | |
os.rename(tmp_path, filename) | |
filenames.append(str(filename)) | |
return filenames, str(output_dir) | |
except Exception as e: | |
raise RuntimeError(f"Failed to convert text to speech: {e}") | |
async def _generate_audio(self, text: str, voice: str, rate: int = 0, pitch: int = 0) -> Tuple[str, str]: | |
if not text.strip(): | |
return None, "Text cannot be empty" | |
if not voice: | |
return None, "Voice cannot be empty" | |
voice_short_name = voice.split(" - ")[0] | |
rate_str = f"{rate:+d}%" | |
pitch_str = f"{pitch:+d}Hz" | |
communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str) | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file: | |
tmp_path = tmp_file.name | |
await communicate.save(tmp_path) | |
return tmp_path, None | |
def _create_output_directory(self) -> str: | |
random_bytes = os.urandom(8) | |
folder_name = base64.urlsafe_b64encode(random_bytes).decode("utf-8") | |
os.makedirs(folder_name, exist_ok=True) | |
return folder_name | |
def combine_audio_files(self, filenames: List[str]) -> AudioSegment: | |
if not filenames: | |
raise ValueError("No input files provided") | |
try: | |
combined = AudioSegment.empty() | |
for filename in filenames: | |
audio_segment = AudioSegment.from_file(filename, format="mp3") | |
combined += audio_segment | |
return combined | |
except Exception as e: | |
raise RuntimeError(f"Failed to combine audio files: {e}") | |
def add_background_music_and_tags( | |
self, speech_audio: AudioSegment, music_file: str, tags_files: List[str] | |
) -> AudioSegment: | |
music = AudioSegment.from_file(music_file) | |
if len(music) < len(speech_audio): | |
loops = (len(speech_audio) // len(music)) + 1 | |
music = music * loops | |
music = music[:len(speech_audio)] - 20 # bajar volumen música | |
mixed = speech_audio.overlay(music) | |
for i, tag_path in enumerate(tags_files): | |
tag_audio = AudioSegment.from_file(tag_path) - 5 | |
if i == 0: | |
mixed = tag_audio + mixed | |
else: | |
mixed = mixed + tag_audio | |
return mixed | |
async def url_to_audio(self, url: str, voice_1: str, voice_2: str) -> Tuple[str, str]: | |
text = self.fetch_text(url) | |
words = text.split() | |
if len(words) > self.config.max_words: | |
text = " ".join(words[:self.config.max_words]) | |
conversation_json = self.extract_conversation(text) | |
conversation_text = "\n".join( | |
f"{turn['speaker']}: {turn['text']}" for turn in conversation_json["conversation"] | |
) | |
self.llm_out = conversation_json | |
audio_files, folder_name = await self.text_to_speech(conversation_json, voice_1, voice_2) | |
combined_audio = self.combine_audio_files(audio_files) | |
music_path = "assets/musica.mp3" | |
tags_paths = ["assets/tag.mp3", "assets/tag2.mp3"] | |
final_audio = self.add_background_music_and_tags(combined_audio, music_path, tags_paths) | |
final_output = os.path.join(folder_name, "combined_output_with_music.mp3") | |
final_audio.export(final_output, format="mp3") | |
for f in audio_files: | |
os.remove(f) | |
return final_output, conversation_text | |
async def text_to_audio(self, text: str, voice_1: str, voice_2: str) -> Tuple[str, str]: | |
conversation_json = self.extract_conversation(text) | |
conversation_text = "\n".join( | |
f"{turn['speaker']}: {turn['text']}" for turn in conversation_json["conversation"] | |
) | |
audio_files, folder_name = await self.text_to_speech(conversation_json, voice_1, voice_2) | |
combined_audio = self.combine_audio_files(audio_files) | |
music_path = "assets/musica.mp3" | |
tags_paths = ["assets/tag.mp3", "assets/tag2.mp3"] | |
final_audio = self.add_background_music_and_tags(combined_audio, music_path, tags_paths) | |
final_output = os.path.join(folder_name, "combined_output_with_music.mp3") | |
final_audio.export(final_output, format="mp3") | |
for f in audio_files: | |
os.remove(f) | |
return final_output, conversation_text | |
async def raw_text_to_audio(self, text: str, voice_1: str, voice_2: str) -> Tuple[str, str]: | |
conversation = { | |
"conversation": [ | |
{"speaker": "Host", "text": text}, | |
{"speaker": "Co-host", "text": "(Continuación del tema)"} | |
] | |
} | |
audio_files, folder_name = await self.text_to_speech(conversation, voice_1, voice_2) | |
combined_audio = self.combine_audio_files(audio_files) | |
music_path = "assets/musica.mp3" | |
tags_paths = ["assets/tag.mp3", "assets/tag2.mp3"] | |
final_audio = self.add_background_music_and_tags(combined_audio, music_path, tags_paths) | |
output_file = os.path.join(folder_name, "raw_podcast_with_music.mp3") | |
final_audio.export(output_file, format="mp3") | |
for f in audio_files: | |
os.remove(f) | |
return text, output_file | |