Podcastking2 / conver.py
gnosticdev's picture
Update conver.py
587b534 verified
raw
history blame
8.36 kB
from dataclasses import dataclass
from typing import List, Tuple, Dict
import os
import json
import httpx
from openai import OpenAI
import edge_tts
import tempfile
from pydub import AudioSegment
import base64
from pathlib import Path
@dataclass
class ConversationConfig:
max_words: int = 3000
prefix_url: str = "https://r.jina.ai/"
model_name: str = "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo"
class URLToAudioConverter:
def __init__(self, config: ConversationConfig, llm_api_key: str):
self.config = config
self.llm_client = OpenAI(api_key=llm_api_key, base_url="https://api.together.xyz/v1")
self.llm_out = None
def fetch_text(self, url: str) -> str:
if not url:
raise ValueError("URL cannot be empty")
full_url = f"{self.config.prefix_url}{url}"
try:
response = httpx.get(full_url, timeout=60.0)
response.raise_for_status()
return response.text
except httpx.HTTPError as e:
raise RuntimeError(f"Failed to fetch URL: {e}")
def extract_conversation(self, text: str) -> Dict:
if not text:
raise ValueError("Input text cannot be empty")
try:
prompt = (
f"{text}\nConvert the provided text into a short informative podcast conversation "
f"between two experts. Return ONLY a JSON object with the following structure:\n"
'{"conversation": [{"speaker": "Speaker1", "text": "..."}, {"speaker": "Speaker2", "text": "..."}]}'
)
chat_completion = self.llm_client.chat.completions.create(
messages=[{"role": "user", "content": prompt}],
model=self.config.model_name,
response_format={"type": "json_object"}
)
response_content = chat_completion.choices[0].message.content
json_str = response_content.strip()
if not json_str.startswith('{'):
start = json_str.find('{')
if start != -1:
json_str = json_str[start:]
if not json_str.endswith('}'):
end = json_str.rfind('}')
if end != -1:
json_str = json_str[:end+1]
return json.loads(json_str)
except Exception as e:
print(f"Error en extract_conversation: {str(e)}")
print(f"Respuesta del modelo: {response_content}")
raise RuntimeError(f"Failed to extract conversation: {str(e)}")
async def text_to_speech(self, conversation_json: Dict, voice_1: str, voice_2: str) -> Tuple[List[str], str]:
output_dir = Path(self._create_output_directory())
filenames = []
try:
for i, turn in enumerate(conversation_json["conversation"]):
filename = output_dir / f"output_{i}.mp3"
voice = voice_1 if i % 2 == 0 else voice_2
tmp_path, error = await self._generate_audio(turn["text"], voice)
if error:
raise RuntimeError(f"Text-to-speech failed: {error}")
os.rename(tmp_path, filename)
filenames.append(str(filename))
return filenames, str(output_dir)
except Exception as e:
raise RuntimeError(f"Failed to convert text to speech: {e}")
async def _generate_audio(self, text: str, voice: str, rate: int = 0, pitch: int = 0) -> Tuple[str, str]:
if not text.strip():
return None, "Text cannot be empty"
if not voice:
return None, "Voice cannot be empty"
voice_short_name = voice.split(" - ")[0]
rate_str = f"{rate:+d}%"
pitch_str = f"{pitch:+d}Hz"
communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path, None
def _create_output_directory(self) -> str:
random_bytes = os.urandom(8)
folder_name = base64.urlsafe_b64encode(random_bytes).decode("utf-8")
os.makedirs(folder_name, exist_ok=True)
return folder_name
def combine_audio_files(self, filenames: List[str]) -> AudioSegment:
if not filenames:
raise ValueError("No input files provided")
try:
combined = AudioSegment.empty()
for filename in filenames:
audio_segment = AudioSegment.from_file(filename, format="mp3")
combined += audio_segment
return combined
except Exception as e:
raise RuntimeError(f"Failed to combine audio files: {e}")
def add_background_music_and_tags(
self, speech_audio: AudioSegment, music_file: str, tags_files: List[str]
) -> AudioSegment:
music = AudioSegment.from_file(music_file)
if len(music) < len(speech_audio):
loops = (len(speech_audio) // len(music)) + 1
music = music * loops
music = music[:len(speech_audio)] - 20 # bajar volumen música
mixed = speech_audio.overlay(music)
for i, tag_path in enumerate(tags_files):
tag_audio = AudioSegment.from_file(tag_path) - 5
if i == 0:
mixed = tag_audio + mixed
else:
mixed = mixed + tag_audio
return mixed
async def url_to_audio(self, url: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
text = self.fetch_text(url)
words = text.split()
if len(words) > self.config.max_words:
text = " ".join(words[:self.config.max_words])
conversation_json = self.extract_conversation(text)
conversation_text = "\n".join(
f"{turn['speaker']}: {turn['text']}" for turn in conversation_json["conversation"]
)
self.llm_out = conversation_json
audio_files, folder_name = await self.text_to_speech(conversation_json, voice_1, voice_2)
combined_audio = self.combine_audio_files(audio_files)
music_path = "assets/musica.mp3"
tags_paths = ["assets/tag.mp3", "assets/tag2.mp3"]
final_audio = self.add_background_music_and_tags(combined_audio, music_path, tags_paths)
final_output = os.path.join(folder_name, "combined_output_with_music.mp3")
final_audio.export(final_output, format="mp3")
for f in audio_files:
os.remove(f)
return final_output, conversation_text
async def text_to_audio(self, text: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
conversation_json = self.extract_conversation(text)
conversation_text = "\n".join(
f"{turn['speaker']}: {turn['text']}" for turn in conversation_json["conversation"]
)
audio_files, folder_name = await self.text_to_speech(conversation_json, voice_1, voice_2)
combined_audio = self.combine_audio_files(audio_files)
music_path = "assets/musica.mp3"
tags_paths = ["assets/tag.mp3", "assets/tag2.mp3"]
final_audio = self.add_background_music_and_tags(combined_audio, music_path, tags_paths)
final_output = os.path.join(folder_name, "combined_output_with_music.mp3")
final_audio.export(final_output, format="mp3")
for f in audio_files:
os.remove(f)
return final_output, conversation_text
async def raw_text_to_audio(self, text: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
conversation = {
"conversation": [
{"speaker": "Host", "text": text},
{"speaker": "Co-host", "text": "(Continuación del tema)"}
]
}
audio_files, folder_name = await self.text_to_speech(conversation, voice_1, voice_2)
combined_audio = self.combine_audio_files(audio_files)
music_path = "assets/musica.mp3"
tags_paths = ["assets/tag.mp3", "assets/tag2.mp3"]
final_audio = self.add_background_music_and_tags(combined_audio, music_path, tags_paths)
output_file = os.path.join(folder_name, "raw_podcast_with_music.mp3")
final_audio.export(output_file, format="mp3")
for f in audio_files:
os.remove(f)
return text, output_file