Spaces:
Running
Running
Update conver.py
Browse files
conver.py
CHANGED
@@ -10,6 +10,7 @@ import tempfile
|
|
10 |
from pydub import AudioSegment
|
11 |
import base64
|
12 |
from pathlib import Path
|
|
|
13 |
|
14 |
@dataclass
|
15 |
class ConversationConfig:
|
@@ -26,86 +27,50 @@ class URLToAudioConverter:
|
|
26 |
def fetch_text(self, url: str) -> str:
|
27 |
if not url:
|
28 |
raise ValueError("URL cannot be empty")
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
response = httpx.get(full_url, timeout=60.0)
|
33 |
-
response.raise_for_status()
|
34 |
-
return response.text
|
35 |
-
except httpx.HTTPError as e:
|
36 |
-
raise RuntimeError(f"Failed to fetch URL: {e}")
|
37 |
|
38 |
def extract_conversation(self, text: str) -> Dict:
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
json_str = response_content.strip()
|
57 |
-
|
58 |
-
if not json_str.startswith('{'):
|
59 |
-
start = json_str.find('{')
|
60 |
-
if start != -1:
|
61 |
-
json_str = json_str[start:]
|
62 |
-
|
63 |
-
if not json_str.endswith('}'):
|
64 |
-
end = json_str.rfind('}')
|
65 |
-
if end != -1:
|
66 |
-
json_str = json_str[:end+1]
|
67 |
-
|
68 |
-
return json.loads(json_str)
|
69 |
-
except Exception as e:
|
70 |
-
print(f"Error en extract_conversation: {str(e)}")
|
71 |
-
print(f"Respuesta del modelo: {response_content}")
|
72 |
-
raise RuntimeError(f"Failed to extract conversation: {str(e)}")
|
73 |
|
74 |
async def text_to_speech(self, conversation_json: Dict, voice_1: str, voice_2: str) -> Tuple[List[str], str]:
|
75 |
output_dir = Path(self._create_output_directory())
|
76 |
filenames = []
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
os.rename(tmp_path, filename)
|
88 |
-
filenames.append(str(filename))
|
89 |
-
|
90 |
-
return filenames, str(output_dir)
|
91 |
-
except Exception as e:
|
92 |
-
raise RuntimeError(f"Failed to convert text to speech: {e}")
|
93 |
|
94 |
async def _generate_audio(self, text: str, voice: str, rate: int = 0, pitch: int = 0) -> Tuple[str, str]:
|
95 |
-
if not text.strip():
|
96 |
-
return None, "Text cannot be empty"
|
97 |
-
if not voice:
|
98 |
-
return None, "Voice cannot be empty"
|
99 |
-
|
100 |
voice_short_name = voice.split(" - ")[0]
|
101 |
rate_str = f"{rate:+d}%"
|
102 |
pitch_str = f"{pitch:+d}Hz"
|
103 |
communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str)
|
104 |
-
|
105 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
|
106 |
tmp_path = tmp_file.name
|
107 |
await communicate.save(tmp_path)
|
108 |
-
|
109 |
return tmp_path, None
|
110 |
|
111 |
def _create_output_directory(self) -> str:
|
@@ -115,70 +80,39 @@ class URLToAudioConverter:
|
|
115 |
return folder_name
|
116 |
|
117 |
def combine_audio_files(self, filenames: List[str], output_file: str) -> None:
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
combined.export(output_file, format="mp3")
|
128 |
-
|
129 |
-
# Limpieza
|
130 |
-
dir_path = os.path.dirname(filenames[0])
|
131 |
-
for file in os.listdir(dir_path):
|
132 |
-
file_path = os.path.join(dir_path, file)
|
133 |
-
if os.path.isfile(file_path):
|
134 |
-
os.remove(file_path)
|
135 |
-
os.rmdir(dir_path)
|
136 |
-
|
137 |
-
except Exception as e:
|
138 |
-
raise RuntimeError(f"Failed to combine audio files: {e}")
|
139 |
|
140 |
async def url_to_audio(self, url: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
|
141 |
text = self.fetch_text(url)
|
142 |
-
|
143 |
words = text.split()
|
144 |
if len(words) > self.config.max_words:
|
145 |
-
text = " ".join(words[:self.config.max_words])
|
146 |
-
|
147 |
conversation_json = self.extract_conversation(text)
|
148 |
-
conversation_text = "\n".join(
|
149 |
-
f"{turn['speaker']}: {turn['text']}" for turn in conversation_json["conversation"]
|
150 |
-
)
|
151 |
self.llm_out = conversation_json
|
152 |
-
audio_files, folder_name = await self.text_to_speech(
|
153 |
-
conversation_json, voice_1, voice_2
|
154 |
-
)
|
155 |
-
|
156 |
final_output = os.path.join(folder_name, "combined_output.mp3")
|
157 |
self.combine_audio_files(audio_files, final_output)
|
158 |
return final_output, conversation_text
|
159 |
|
160 |
async def text_to_audio(self, text: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
|
161 |
-
"""Procesamiento normal con LLM"""
|
162 |
conversation_json = self.extract_conversation(text)
|
163 |
-
conversation_text = "\n".join(
|
164 |
-
|
165 |
-
)
|
166 |
-
audio_files, folder_name = await self.text_to_speech(
|
167 |
-
conversation_json, voice_1, voice_2
|
168 |
-
)
|
169 |
final_output = os.path.join(folder_name, "combined_output.mp3")
|
170 |
self.combine_audio_files(audio_files, final_output)
|
171 |
return final_output, conversation_text
|
172 |
|
173 |
async def raw_text_to_audio(self, text: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
]
|
180 |
-
}
|
181 |
-
audio_files, folder_name = await self.text_to_speech(conversation, voice_1, voice_2)
|
182 |
-
output_file = os.path.join(folder_name, "raw_podcast.mp3")
|
183 |
-
self.combine_audio_files(audio_files, output_file)
|
184 |
-
return text, output_file
|
|
|
10 |
from pydub import AudioSegment
|
11 |
import base64
|
12 |
from pathlib import Path
|
13 |
+
import hashlib
|
14 |
|
15 |
@dataclass
|
16 |
class ConversationConfig:
|
|
|
27 |
def fetch_text(self, url: str) -> str:
|
28 |
if not url:
|
29 |
raise ValueError("URL cannot be empty")
|
30 |
+
response = httpx.get(f"{self.config.prefix_url}{url}", timeout=60.0)
|
31 |
+
response.raise_for_status()
|
32 |
+
return response.text
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
def extract_conversation(self, text: str) -> Dict:
|
35 |
+
prompt = (
|
36 |
+
f"{text}\nConvert the provided text into a short informative podcast conversation "
|
37 |
+
f"between two experts. Return ONLY a JSON object with the following structure:\n"
|
38 |
+
'{"conversation": [{"speaker": "Speaker1", "text": "..."}, {"speaker": "Speaker2", "text": "..."}]}'
|
39 |
+
)
|
40 |
+
chat_completion = self.llm_client.chat.completions.create(
|
41 |
+
messages=[{"role": "user", "content": prompt}],
|
42 |
+
model=self.config.model_name,
|
43 |
+
response_format={"type": "json_object"}
|
44 |
+
)
|
45 |
+
response_content = chat_completion.choices[0].message.content
|
46 |
+
json_str = response_content.strip()
|
47 |
+
if not json_str.startswith("{"):
|
48 |
+
json_str = json_str[json_str.find("{"):]
|
49 |
+
if not json_str.endswith("}"):
|
50 |
+
json_str = json_str[: json_str.rfind("}") + 1]
|
51 |
+
return json.loads(json_str)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
async def text_to_speech(self, conversation_json: Dict, voice_1: str, voice_2: str) -> Tuple[List[str], str]:
|
54 |
output_dir = Path(self._create_output_directory())
|
55 |
filenames = []
|
56 |
+
for i, turn in enumerate(conversation_json["conversation"]):
|
57 |
+
voice = voice_1 if i % 2 == 0 else voice_2
|
58 |
+
tmp_path, error = await self._generate_audio(turn["text"], voice)
|
59 |
+
if error:
|
60 |
+
raise RuntimeError(f"Text-to-speech failed: {error}")
|
61 |
+
filename = output_dir / f"output_{i}.mp3"
|
62 |
+
os.rename(tmp_path, filename)
|
63 |
+
filenames.append(str(filename))
|
64 |
+
return filenames, str(output_dir)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
async def _generate_audio(self, text: str, voice: str, rate: int = 0, pitch: int = 0) -> Tuple[str, str]:
|
|
|
|
|
|
|
|
|
|
|
67 |
voice_short_name = voice.split(" - ")[0]
|
68 |
rate_str = f"{rate:+d}%"
|
69 |
pitch_str = f"{pitch:+d}Hz"
|
70 |
communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str)
|
|
|
71 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
|
72 |
tmp_path = tmp_file.name
|
73 |
await communicate.save(tmp_path)
|
|
|
74 |
return tmp_path, None
|
75 |
|
76 |
def _create_output_directory(self) -> str:
|
|
|
80 |
return folder_name
|
81 |
|
82 |
def combine_audio_files(self, filenames: List[str], output_file: str) -> None:
|
83 |
+
combined = AudioSegment.empty()
|
84 |
+
for filename in filenames:
|
85 |
+
combined += AudioSegment.from_file(filename, format="mp3")
|
86 |
+
combined.export(output_file, format="mp3")
|
87 |
+
dir_path = os.path.dirname(filenames[0])
|
88 |
+
for file in os.listdir(dir_path):
|
89 |
+
os.remove(os.path.join(dir_path, file))
|
90 |
+
os.rmdir(dir_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
async def url_to_audio(self, url: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
|
93 |
text = self.fetch_text(url)
|
|
|
94 |
words = text.split()
|
95 |
if len(words) > self.config.max_words:
|
96 |
+
text = " ".join(words[: self.config.max_words])
|
|
|
97 |
conversation_json = self.extract_conversation(text)
|
98 |
+
conversation_text = "\n".join(f"{t['speaker']}: {t['text']}" for t in conversation_json["conversation"])
|
|
|
|
|
99 |
self.llm_out = conversation_json
|
100 |
+
audio_files, folder_name = await self.text_to_speech(conversation_json, voice_1, voice_2)
|
|
|
|
|
|
|
101 |
final_output = os.path.join(folder_name, "combined_output.mp3")
|
102 |
self.combine_audio_files(audio_files, final_output)
|
103 |
return final_output, conversation_text
|
104 |
|
105 |
async def text_to_audio(self, text: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
|
|
|
106 |
conversation_json = self.extract_conversation(text)
|
107 |
+
conversation_text = "\n".join(f"{t['speaker']}: {t['text']}" for t in conversation_json["conversation"])
|
108 |
+
audio_files, folder_name = await self.text_to_speech(conversation_json, voice_1, voice_2)
|
|
|
|
|
|
|
|
|
109 |
final_output = os.path.join(folder_name, "combined_output.mp3")
|
110 |
self.combine_audio_files(audio_files, final_output)
|
111 |
return final_output, conversation_text
|
112 |
|
113 |
async def raw_text_to_audio(self, text: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
|
114 |
+
hash_name = hashlib.md5(text.encode()).hexdigest()[:8]
|
115 |
+
output_file = f"podcast_{hash_name}.mp3"
|
116 |
+
communicate = edge_tts.Communicate(text, voice_1.split(" - ")[0])
|
117 |
+
await communicate.save(output_file)
|
118 |
+
return text, output_file
|
|
|
|
|
|
|
|
|
|
|
|