Spaces:
Running
Running
Update conver.py
Browse files
conver.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
from dataclasses import dataclass
|
2 |
-
from typing import List, Tuple, Dict
|
3 |
import os
|
4 |
import json
|
5 |
import httpx
|
@@ -14,7 +14,7 @@ from pathlib import Path
|
|
14 |
class ConversationConfig:
|
15 |
max_words: int = 3000
|
16 |
prefix_url: str = "https://r.jina.ai/"
|
17 |
-
model_name: str = "meta-llama/Llama-3-8b-chat-hf"
|
18 |
|
19 |
class URLToAudioConverter:
|
20 |
def __init__(self, config: ConversationConfig, llm_api_key: str):
|
@@ -34,23 +34,39 @@ class URLToAudioConverter:
|
|
34 |
raise RuntimeError(f"Failed to fetch URL: {e}")
|
35 |
|
36 |
def extract_conversation(self, text: str) -> Dict:
|
|
|
37 |
if not text:
|
38 |
raise ValueError("Input text cannot be empty")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
try:
|
40 |
-
prompt = (
|
41 |
-
f"{text}\nConvert this text into a podcast conversation between two hosts. "
|
42 |
-
"Return ONLY JSON with this structure:\n"
|
43 |
-
'{"conversation": [{"speaker": "Host1", "text": "..."}, {"speaker": "Host2", "text": "..."}]}'
|
44 |
-
)
|
45 |
response = self.llm_client.chat.completions.create(
|
46 |
messages=[{"role": "user", "content": prompt}],
|
47 |
model=self.config.model_name,
|
48 |
-
|
49 |
)
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
except Exception as e:
|
53 |
-
raise RuntimeError(f"Failed to
|
54 |
|
55 |
async def text_to_speech(self, conversation_json: Dict, voice_1: str, voice_2: str) -> Tuple[List[str], str]:
|
56 |
output_dir = Path(self._create_output_directory())
|
@@ -100,7 +116,7 @@ class URLToAudioConverter:
|
|
100 |
) -> AudioSegment:
|
101 |
music = AudioSegment.from_file(music_path).fade_out(2000) - 25
|
102 |
if len(music) < len(speech_audio):
|
103 |
-
music = music * ((len(speech_audio) // len(music)
|
104 |
music = music[:len(speech_audio)]
|
105 |
mixed = speech_audio.overlay(music)
|
106 |
|
@@ -108,6 +124,7 @@ class URLToAudioConverter:
|
|
108 |
tag_trans = AudioSegment.from_file(tags_paths[1]) - 10
|
109 |
final_audio = tag_intro + mixed
|
110 |
|
|
|
111 |
silent_ranges = []
|
112 |
for i in range(0, len(speech_audio) - 500, 100):
|
113 |
chunk = speech_audio[i:i+500]
|
@@ -132,7 +149,7 @@ class URLToAudioConverter:
|
|
132 |
return await self._process_to_audio(conversation, voice_1, voice_2)
|
133 |
|
134 |
async def raw_text_to_audio(self, text: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
|
135 |
-
conversation = {"conversation": [{"speaker": "
|
136 |
return await self._process_to_audio(conversation, voice_1, voice_2)
|
137 |
|
138 |
async def _process_to_audio(
|
@@ -148,7 +165,7 @@ class URLToAudioConverter:
|
|
148 |
"musica.mp3",
|
149 |
["tag.mp3", "tag2.mp3"]
|
150 |
)
|
151 |
-
output_path = os.path.join(folder_name, "
|
152 |
final_audio.export(output_path, format="mp3")
|
153 |
|
154 |
for f in audio_files:
|
|
|
1 |
from dataclasses import dataclass
|
2 |
+
from typing import List, Tuple, Dict
|
3 |
import os
|
4 |
import json
|
5 |
import httpx
|
|
|
14 |
class ConversationConfig:
|
15 |
max_words: int = 3000
|
16 |
prefix_url: str = "https://r.jina.ai/"
|
17 |
+
model_name: str = "meta-llama/Llama-3-8b-chat-hf" # Modelo serverless
|
18 |
|
19 |
class URLToAudioConverter:
|
20 |
def __init__(self, config: ConversationConfig, llm_api_key: str):
|
|
|
34 |
raise RuntimeError(f"Failed to fetch URL: {e}")
|
35 |
|
36 |
def extract_conversation(self, text: str) -> Dict:
|
37 |
+
"""Versión que parsea 'Host1: texto' -> JSON"""
|
38 |
if not text:
|
39 |
raise ValueError("Input text cannot be empty")
|
40 |
+
|
41 |
+
prompt = (
|
42 |
+
f"{text}\nCreate a podcast dialogue between Host1 and Host2. "
|
43 |
+
"Use EXACTLY this format:\n\n"
|
44 |
+
"Host1: [message]\nHost2: [reply]\nHost1: [response]..."
|
45 |
+
)
|
46 |
+
|
47 |
try:
|
|
|
|
|
|
|
|
|
|
|
48 |
response = self.llm_client.chat.completions.create(
|
49 |
messages=[{"role": "user", "content": prompt}],
|
50 |
model=self.config.model_name,
|
51 |
+
temperature=0.7
|
52 |
)
|
53 |
+
raw_dialogue = response.choices[0].message.content
|
54 |
+
|
55 |
+
# Parseo seguro del formato
|
56 |
+
conversation = {"conversation": []}
|
57 |
+
for line in raw_dialogue.split('\n'):
|
58 |
+
if ':' in line:
|
59 |
+
speaker, _, content = line.partition(':')
|
60 |
+
if speaker.strip() in ("Host1", "Host2"):
|
61 |
+
conversation["conversation"].append({
|
62 |
+
"speaker": speaker.strip(),
|
63 |
+
"text": content.strip()
|
64 |
+
})
|
65 |
+
|
66 |
+
return conversation
|
67 |
+
|
68 |
except Exception as e:
|
69 |
+
raise RuntimeError(f"Failed to parse dialogue: {str(e)}")
|
70 |
|
71 |
async def text_to_speech(self, conversation_json: Dict, voice_1: str, voice_2: str) -> Tuple[List[str], str]:
|
72 |
output_dir = Path(self._create_output_directory())
|
|
|
116 |
) -> AudioSegment:
|
117 |
music = AudioSegment.from_file(music_path).fade_out(2000) - 25
|
118 |
if len(music) < len(speech_audio):
|
119 |
+
music = music * ((len(speech_audio) // len(music) + 1)
|
120 |
music = music[:len(speech_audio)]
|
121 |
mixed = speech_audio.overlay(music)
|
122 |
|
|
|
124 |
tag_trans = AudioSegment.from_file(tags_paths[1]) - 10
|
125 |
final_audio = tag_intro + mixed
|
126 |
|
127 |
+
# Insertar tags en silencios >500ms
|
128 |
silent_ranges = []
|
129 |
for i in range(0, len(speech_audio) - 500, 100):
|
130 |
chunk = speech_audio[i:i+500]
|
|
|
149 |
return await self._process_to_audio(conversation, voice_1, voice_2)
|
150 |
|
151 |
async def raw_text_to_audio(self, text: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
|
152 |
+
conversation = {"conversation": [{"speaker": "Host1", "text": text}]}
|
153 |
return await self._process_to_audio(conversation, voice_1, voice_2)
|
154 |
|
155 |
async def _process_to_audio(
|
|
|
165 |
"musica.mp3",
|
166 |
["tag.mp3", "tag2.mp3"]
|
167 |
)
|
168 |
+
output_path = os.path.join(folder_name, "podcast_final.mp3")
|
169 |
final_audio.export(output_path, format="mp3")
|
170 |
|
171 |
for f in audio_files:
|