Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,54 +1,187 @@
|
|
1 |
-
|
|
|
2 |
import os
|
3 |
-
import
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import List, Tuple, Dict
|
3 |
import os
|
4 |
+
import re
|
5 |
+
import httpx
|
6 |
+
import json
|
7 |
+
from openai import OpenAI
|
8 |
+
import edge_tts
|
9 |
+
import tempfile
|
10 |
+
from pydub import AudioSegment
|
11 |
+
import base64
|
12 |
+
from pathlib import Path
|
13 |
+
import shutil # Importamos shutil para manejo de directorios
|
14 |
|
15 |
+
@dataclass
|
16 |
+
class ConversationConfig:
|
17 |
+
max_words: int = 3000
|
18 |
+
prefix_url: str = "https://r.jina.ai/"
|
19 |
+
model_name: str = "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo"
|
20 |
|
21 |
+
class URLToAudioConverter:
|
22 |
+
def __init__(self, config: ConversationConfig, llm_api_key: str):
|
23 |
+
self.config = config
|
24 |
+
self.llm_client = OpenAI(api_key=llm_api_key, base_url="https://api.together.xyz/v1")
|
25 |
+
self.llm_out = None
|
26 |
|
27 |
+
def fetch_text(self, url: str) -> str:
|
28 |
+
if not url:
|
29 |
+
raise ValueError("URL cannot be empty")
|
30 |
+
|
31 |
+
full_url = f"{self.config.prefix_url}{url}"
|
32 |
+
try:
|
33 |
+
response = httpx.get(full_url, timeout=60.0)
|
34 |
+
response.raise_for_status()
|
35 |
+
return response.text
|
36 |
+
except httpx.HTTPError as e:
|
37 |
+
raise RuntimeError(f"Failed to fetch URL: {e}")
|
38 |
+
|
39 |
+
def extract_conversation(self, text: str) -> Dict:
|
40 |
+
if not text:
|
41 |
+
raise ValueError("Input text cannot be empty")
|
42 |
+
|
43 |
+
try:
|
44 |
+
# Prompt mejorado para obtener JSON consistente
|
45 |
+
prompt = (
|
46 |
+
f"{text}\nConvert the provided text into a short informative podcast conversation "
|
47 |
+
f"between two experts. Return ONLY a JSON object with the following structure:\n"
|
48 |
+
'{"conversation": [{"speaker": "Speaker1", "text": "..."}, {"speaker": "Speaker2", "text": "..."}]}'
|
49 |
+
)
|
50 |
+
|
51 |
+
chat_completion = self.llm_client.chat.completions.create(
|
52 |
+
messages=[{"role": "user", "content": prompt}],
|
53 |
+
model=self.config.model_name,
|
54 |
+
response_format={"type": "json_object"} # Fuerza formato JSON
|
55 |
+
)
|
56 |
+
|
57 |
+
# Extracción robusta de JSON
|
58 |
+
response_content = chat_completion.choices[0].message.content
|
59 |
+
json_str = response_content.strip()
|
60 |
+
|
61 |
+
# Limpieza de texto alrededor del JSON
|
62 |
+
if not json_str.startswith('{'):
|
63 |
+
start = json_str.find('{')
|
64 |
+
if start != -1:
|
65 |
+
json_str = json_str[start:]
|
66 |
+
|
67 |
+
if not json_str.endswith('}'):
|
68 |
+
end = json_str.rfind('}')
|
69 |
+
if end != -1:
|
70 |
+
json_str = json_str[:end+1]
|
71 |
+
|
72 |
+
return json.loads(json_str)
|
73 |
+
except Exception as e:
|
74 |
+
# Debug: Imprime la respuesta del modelo para diagnóstico
|
75 |
+
print(f"Error en extract_conversation: {str(e)}")
|
76 |
+
print(f"Respuesta del modelo: {response_content}")
|
77 |
+
raise RuntimeError(f"Failed to extract conversation: {str(e)}")
|
78 |
+
|
79 |
+
async def text_to_speech(self, conversation_json: Dict, voice_1: str, voice_2: str) -> Tuple[List[str], str]:
|
80 |
+
output_dir = Path(self._create_output_directory())
|
81 |
+
filenames = []
|
82 |
|
83 |
+
try:
|
84 |
+
for i, turn in enumerate(conversation_json["conversation"]):
|
85 |
+
filename = output_dir / f"output_{i}.mp3"
|
86 |
+
voice = voice_1 if i % 2 == 0 else voice_2
|
87 |
+
|
88 |
+
tmp_path, error = await self._generate_audio(turn["text"], voice)
|
89 |
+
if error:
|
90 |
+
raise RuntimeError(f"Text-to-speech failed: {error}")
|
91 |
+
|
92 |
+
os.rename(tmp_path, filename)
|
93 |
+
filenames.append(str(filename))
|
94 |
+
|
95 |
+
return filenames, str(output_dir)
|
96 |
+
except Exception as e:
|
97 |
+
raise RuntimeError(f"Failed to convert text to speech: {e}")
|
98 |
+
|
99 |
+
async def _generate_audio(self, text: str, voice: str, rate: int = 0, pitch: int = 0) -> Tuple[str, str]:
|
100 |
+
if not text.strip():
|
101 |
+
return None, "Text cannot be empty"
|
102 |
+
if not voice:
|
103 |
+
return None, "Voice cannot be empty"
|
104 |
+
|
105 |
+
voice_short_name = voice.split(" - ")[0]
|
106 |
+
rate_str = f"{rate:+d}%"
|
107 |
+
pitch_str = f"{pitch:+d}Hz"
|
108 |
+
communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str)
|
109 |
+
|
110 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
|
111 |
+
tmp_path = tmp_file.name
|
112 |
+
await communicate.save(tmp_path)
|
113 |
+
|
114 |
+
return tmp_path, None
|
115 |
+
|
116 |
+
def _create_output_directory(self) -> str:
|
117 |
+
random_bytes = os.urandom(8)
|
118 |
+
folder_name = base64.urlsafe_b64encode(random_bytes).decode("utf-8")
|
119 |
+
os.makedirs(folder_name, exist_ok=True)
|
120 |
+
return folder_name
|
121 |
+
|
122 |
+
def combine_audio_files(self, filenames: List[str], output_file: str) -> None:
|
123 |
+
if not filenames:
|
124 |
+
raise ValueError("No input files provided")
|
125 |
+
|
126 |
+
try:
|
127 |
+
combined = AudioSegment.empty()
|
128 |
+
for filename in filenames:
|
129 |
+
audio_segment = AudioSegment.from_file(filename, format="mp3")
|
130 |
+
combined += audio_segment
|
131 |
+
|
132 |
+
combined.export(output_file, format="mp3")
|
133 |
+
|
134 |
+
# Limpieza mejorada y robusta
|
135 |
+
dir_path = os.path.dirname(filenames[0])
|
136 |
|
137 |
+
# Eliminar todos los archivos en el directorio
|
138 |
+
for file in os.listdir(dir_path):
|
139 |
+
file_path = os.path.join(dir_path, file)
|
140 |
+
if os.path.isfile(file_path):
|
141 |
+
try:
|
142 |
+
os.remove(file_path)
|
143 |
+
except Exception as e:
|
144 |
+
print(f"Warning: Could not remove file {file_path}: {str(e)}")
|
145 |
+
|
146 |
+
# Intentar eliminar el directorio (no crítico si falla)
|
147 |
+
try:
|
148 |
+
os.rmdir(dir_path)
|
149 |
+
except OSError as e:
|
150 |
+
print(f"Info: Could not remove directory {dir_path}: {str(e)}")
|
151 |
+
# No es crítico, el espacio puede continuar
|
152 |
+
|
153 |
+
except Exception as e:
|
154 |
+
raise RuntimeError(f"Failed to combine audio files: {e}")
|
155 |
+
|
156 |
+
async def url_to_audio(self, url: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
|
157 |
+
text = self.fetch_text(url)
|
158 |
+
|
159 |
+
words = text.split()
|
160 |
+
if len(words) > self.config.max_words:
|
161 |
+
text = " ".join(words[:self.config.max_words])
|
162 |
+
|
163 |
+
conversation_json = self.extract_conversation(text)
|
164 |
+
conversation_text = "\n".join(
|
165 |
+
f"{turn['speaker']}: {turn['text']}" for turn in conversation_json["conversation"]
|
166 |
+
)
|
167 |
+
self.llm_out = conversation_json
|
168 |
+
audio_files, folder_name = await self.text_to_speech(
|
169 |
+
conversation_json, voice_1, voice_2
|
170 |
+
)
|
171 |
+
|
172 |
+
final_output = os.path.join(folder_name, "combined_output.mp3")
|
173 |
+
self.combine_audio_files(audio_files, final_output)
|
174 |
+
return final_output, conversation_text
|
175 |
+
|
176 |
+
async def text_to_audio(self, text: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
|
177 |
+
"""Método para procesar texto directo"""
|
178 |
+
conversation_json = self.extract_conversation(text)
|
179 |
+
conversation_text = "\n".join(
|
180 |
+
f"{turn['speaker']}: {turn['text']}" for turn in conversation_json["conversation"]
|
181 |
+
)
|
182 |
+
audio_files, folder_name = await self.text_to_speech(
|
183 |
+
conversation_json, voice_1, voice_2
|
184 |
+
)
|
185 |
+
final_output = os.path.join(folder_name, "combined_output.mp3")
|
186 |
+
self.combine_audio_files(audio_files, final_output)
|
187 |
+
return final_output, conversation_text
|