gnosticdev commited on
Commit
e99d513
·
verified ·
1 Parent(s): 03c080b

Update conver.py

Browse files
Files changed (1) hide show
  1. conver.py +119 -14
conver.py CHANGED
@@ -23,32 +23,99 @@ class URLToAudioConverter:
23
  self.config = config
24
  self.llm_client = OpenAI(api_key=llm_api_key, base_url="https://api.together.xyz/v1")
25
  self.llm_out = None
26
- self._start_cleaner() # 👈 Inicia el limpiador automático
27
 
28
  def _start_cleaner(self, max_age_hours: int = 24):
29
- """Hilo para eliminar archivos antiguos automáticamente"""
30
  def cleaner():
31
  while True:
32
  now = time.time()
33
  for root, _, files in os.walk("."):
34
  for file in files:
35
- if file.endswith((".mp3", ".wav")): # Formatos a limpiar
36
  filepath = os.path.join(root, file)
37
  try:
38
- file_age = now - os.path.getmtime(filepath)
39
- if file_age > max_age_hours * 3600:
40
  os.remove(filepath)
41
  except:
42
- continue
43
- time.sleep(3600) # Revisa cada hora
44
-
45
  Thread(target=cleaner, daemon=True).start()
46
 
47
- # ... [TODOS TUS MÉTODOS ORIGINALES SE MANTIENEN IGUAL A PARTIR DE AQUÍ] ...
48
- # fetch_text, extract_conversation, text_to_speech, etc.
49
- # ...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
- # Método add_background_music_and_tags con paréntesis corregido (sin otros cambios)
52
  def add_background_music_and_tags(
53
  self,
54
  speech_audio: AudioSegment,
@@ -57,7 +124,7 @@ class URLToAudioConverter:
57
  ) -> AudioSegment:
58
  music = AudioSegment.from_file(music_path).fade_out(2000) - 25
59
  if len(music) < len(speech_audio):
60
- music = music * ((len(speech_audio) // len(music)) + 1 # 👈 Paréntesis corregido
61
  music = music[:len(speech_audio)]
62
  mixed = speech_audio.overlay(music)
63
 
@@ -77,4 +144,42 @@ class URLToAudioConverter:
77
 
78
  return final_audio
79
 
80
- # ... [EL RESTO DE TUS MÉTODOS (url_to_audio, text_to_audio, etc.) SIN CAMBIOS] ...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  self.config = config
24
  self.llm_client = OpenAI(api_key=llm_api_key, base_url="https://api.together.xyz/v1")
25
  self.llm_out = None
26
+ self._start_cleaner() # Inicia limpieza automática
27
 
28
  def _start_cleaner(self, max_age_hours: int = 24):
29
+ """Elimina archivos antiguos cada hora"""
30
  def cleaner():
31
  while True:
32
  now = time.time()
33
  for root, _, files in os.walk("."):
34
  for file in files:
35
+ if file.endswith((".mp3", ".wav")):
36
  filepath = os.path.join(root, file)
37
  try:
38
+ if now - os.path.getmtime(filepath) > max_age_hours * 3600:
 
39
  os.remove(filepath)
40
  except:
41
+ pass
42
+ time.sleep(3600)
 
43
  Thread(target=cleaner, daemon=True).start()
44
 
45
+ def fetch_text(self, url: str) -> str:
46
+ if not url:
47
+ raise ValueError("URL cannot be empty")
48
+ full_url = f"{self.config.prefix_url}{url}"
49
+ try:
50
+ response = httpx.get(full_url, timeout=60.0)
51
+ response.raise_for_status()
52
+ return response.text
53
+ except httpx.HTTPError as e:
54
+ raise RuntimeError(f"Failed to fetch URL: {e}")
55
+
56
+ def extract_conversation(self, text: str) -> Dict:
57
+ if not text:
58
+ raise ValueError("Input text cannot be empty")
59
+ try:
60
+ prompt = f"{text}\nConvert this into a podcast dialogue between Host1 and Host2. Return ONLY:\nHost1: [text]\nHost2: [text]\n..."
61
+ response = self.llm_client.chat.completions.create(
62
+ messages=[{"role": "user", "content": prompt}],
63
+ model=self.config.model_name
64
+ )
65
+ raw_text = response.choices[0].message.content
66
+ dialogue = {"conversation": []}
67
+ for line in raw_text.split('\n'):
68
+ if ':' in line:
69
+ speaker, _, content = line.partition(':')
70
+ if speaker.strip() in ("Host1", "Host2"):
71
+ dialogue["conversation"].append({
72
+ "speaker": speaker.strip(),
73
+ "text": content.strip()
74
+ })
75
+ return dialogue
76
+ except Exception as e:
77
+ raise RuntimeError(f"Failed to parse dialogue: {str(e)}")
78
+
79
+ async def text_to_speech(self, conversation_json: Dict, voice_1: str, voice_2: str) -> Tuple[List[str], str]:
80
+ output_dir = Path(self._create_output_directory())
81
+ filenames = []
82
+ try:
83
+ for i, turn in enumerate(conversation_json["conversation"]):
84
+ filename = output_dir / f"segment_{i}.mp3"
85
+ voice = voice_1 if turn["speaker"] == "Host1" else voice_2
86
+ tmp_path = await self._generate_audio(turn["text"], voice)
87
+ os.rename(tmp_path, filename)
88
+ filenames.append(str(filename))
89
+ return filenames, str(output_dir)
90
+ except Exception as e:
91
+ raise RuntimeError(f"Text-to-speech failed: {e}")
92
+
93
+ async def _generate_audio(self, text: str, voice: str) -> str:
94
+ if not text.strip():
95
+ raise ValueError("Text cannot be empty")
96
+ communicate = edge_tts.Communicate(
97
+ text,
98
+ voice.split(" - ")[0],
99
+ rate="+0%",
100
+ pitch="+0Hz"
101
+ )
102
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
103
+ await communicate.save(tmp_file.name)
104
+ return tmp_file.name
105
+
106
+ def _create_output_directory(self) -> str:
107
+ folder_name = base64.urlsafe_b64encode(os.urandom(8)).decode("utf-8")
108
+ os.makedirs(folder_name, exist_ok=True)
109
+ return folder_name
110
+
111
+ def combine_audio_files(self, filenames: List[str]) -> AudioSegment:
112
+ if not filenames:
113
+ raise ValueError("No audio files provided")
114
+ combined = AudioSegment.empty()
115
+ for filename in filenames:
116
+ combined += AudioSegment.from_file(filename, format="mp3")
117
+ return combined
118
 
 
119
  def add_background_music_and_tags(
120
  self,
121
  speech_audio: AudioSegment,
 
124
  ) -> AudioSegment:
125
  music = AudioSegment.from_file(music_path).fade_out(2000) - 25
126
  if len(music) < len(speech_audio):
127
+ music = music * ((len(speech_audio) // len(music)) + 1
128
  music = music[:len(speech_audio)]
129
  mixed = speech_audio.overlay(music)
130
 
 
144
 
145
  return final_audio
146
 
147
+ async def url_to_audio(self, url: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
148
+ text = self.fetch_text(url)
149
+ if len(words := text.split()) > self.config.max_words:
150
+ text = " ".join(words[:self.config.max_words])
151
+ conversation = self.extract_conversation(text)
152
+ return await self._process_to_audio(conversation, voice_1, voice_2)
153
+
154
+ async def text_to_audio(self, text: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
155
+ conversation = self.extract_conversation(text)
156
+ return await self._process_to_audio(conversation, voice_1, voice_2)
157
+
158
+ async def raw_text_to_audio(self, text: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
159
+ conversation = {"conversation": [{"speaker": "Host1", "text": text}]}
160
+ return await self._process_to_audio(conversation, voice_1, voice_2)
161
+
162
+ async def _process_to_audio(
163
+ self,
164
+ conversation: Dict,
165
+ voice_1: str,
166
+ voice_2: str
167
+ ) -> Tuple[str, str]:
168
+ audio_files, folder_name = await self.text_to_speech(conversation, voice_1, voice_2)
169
+ combined = self.combine_audio_files(audio_files)
170
+ final_audio = self.add_background_music_and_tags(
171
+ combined,
172
+ "musica.mp3",
173
+ ["tag.mp3", "tag2.mp3"]
174
+ )
175
+ output_path = os.path.join(folder_name, "podcast_final.mp3")
176
+ final_audio.export(output_path, format="mp3")
177
+
178
+ for f in audio_files:
179
+ os.remove(f)
180
+
181
+ text_output = "\n".join(
182
+ f"{turn['speaker']}: {turn['text']}"
183
+ for turn in conversation["conversation"]
184
+ )
185
+ return output_path, text_output