Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,9 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
|
| 3 |
-
|
| 4 |
df = pd.read_csv('./medical_data.csv')
|
| 5 |
|
|
|
|
| 6 |
context_data = []
|
| 7 |
for i in range(len(df)):
|
| 8 |
context = ""
|
|
@@ -13,50 +14,49 @@ for i in range(len(df)):
|
|
| 13 |
context += " "
|
| 14 |
context_data.append(context)
|
| 15 |
|
| 16 |
-
|
| 17 |
import os
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
#
|
| 20 |
groq_key = os.environ.get('groq_api_keys')
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
llm = ChatGroq(model="llama-3.1-70b-versatile",api_key=groq_key)
|
| 26 |
|
| 27 |
-
|
| 28 |
-
from langchain_huggingface import HuggingFaceEmbeddings
|
| 29 |
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
| 30 |
|
| 31 |
-
#
|
| 32 |
-
from langchain_chroma import Chroma
|
| 33 |
-
|
| 34 |
vectorstore = Chroma(
|
| 35 |
-
collection_name="
|
| 36 |
embedding_function=embed_model,
|
| 37 |
)
|
| 38 |
|
| 39 |
-
#
|
| 40 |
vectorstore.add_texts(context_data)
|
| 41 |
|
|
|
|
| 42 |
retriever = vectorstore.as_retriever()
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
template = ("""tu eres un experto en mecanica automotriz, puedes hablar de mas cosas, cuando te pregunten por algo relacionado a los vehiculos o motores
|
| 47 |
-
debes responder pidiendo la marva y modelo de auto, luego pediras la fecha, y pediras que te digan los sintomas, tu les daras soluciones.
|
| 48 |
-
|
| 49 |
Context: {context}
|
| 50 |
-
|
| 51 |
Question: {question}
|
| 52 |
-
|
| 53 |
Answer:""")
|
| 54 |
|
|
|
|
| 55 |
rag_prompt = PromptTemplate.from_template(template)
|
| 56 |
|
|
|
|
| 57 |
from langchain_core.output_parsers import StrOutputParser
|
|
|
|
|
|
|
| 58 |
from langchain_core.runnables import RunnablePassthrough
|
| 59 |
|
|
|
|
| 60 |
rag_chain = (
|
| 61 |
{"context": retriever, "question": RunnablePassthrough()}
|
| 62 |
| rag_prompt
|
|
@@ -64,23 +64,23 @@ rag_chain = (
|
|
| 64 |
| StrOutputParser()
|
| 65 |
)
|
| 66 |
|
|
|
|
| 67 |
import gradio as gr
|
| 68 |
|
|
|
|
| 69 |
def rag_memory_stream(message, history):
|
| 70 |
partial_text = ""
|
| 71 |
for new_text in rag_chain.stream(message):
|
| 72 |
partial_text += new_text
|
| 73 |
yield partial_text
|
| 74 |
|
|
|
|
| 75 |
examples = [
|
| 76 |
-
"
|
| 77 |
-
"
|
| 78 |
]
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
title = "Medical Expert :) Try me!"
|
| 84 |
demo = gr.ChatInterface(fn=rag_memory_stream,
|
| 85 |
type="messages",
|
| 86 |
title=title,
|
|
@@ -90,6 +90,6 @@ demo = gr.ChatInterface(fn=rag_memory_stream,
|
|
| 90 |
theme="glass",
|
| 91 |
)
|
| 92 |
|
| 93 |
-
|
| 94 |
if __name__ == "__main__":
|
| 95 |
-
demo.launch()
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
|
| 3 |
+
# Carga los datos de entrenamiento
|
| 4 |
df = pd.read_csv('./medical_data.csv')
|
| 5 |
|
| 6 |
+
# Crea un arreglo con los contextos
|
| 7 |
context_data = []
|
| 8 |
for i in range(len(df)):
|
| 9 |
context = ""
|
|
|
|
| 14 |
context += " "
|
| 15 |
context_data.append(context)
|
| 16 |
|
| 17 |
+
# Importa las bibliotecas necesarias
|
| 18 |
import os
|
| 19 |
+
from langchain_groq import ChatGroq
|
| 20 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
| 21 |
+
from langchain_chroma import Chroma
|
| 22 |
|
| 23 |
+
# Obtiene la clave de API de Groq
|
| 24 |
groq_key = os.environ.get('groq_api_keys')
|
| 25 |
|
| 26 |
+
# Crea un objeto ChatGroq con el modelo de lenguaje
|
| 27 |
+
llm = ChatGroq(model="llama-3.1-70b-versatile", api_key=groq_key)
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
# Crea un objeto HuggingFaceEmbeddings con el modelo de embeddings
|
|
|
|
| 30 |
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
| 31 |
|
| 32 |
+
# Crea un objeto Chroma con el nombre de la colecci贸n
|
|
|
|
|
|
|
| 33 |
vectorstore = Chroma(
|
| 34 |
+
collection_name="mecanica_automotriz",
|
| 35 |
embedding_function=embed_model,
|
| 36 |
)
|
| 37 |
|
| 38 |
+
# Agrega los textos a la colecci贸n
|
| 39 |
vectorstore.add_texts(context_data)
|
| 40 |
|
| 41 |
+
# Crea un objeto retriever con la colecci贸n
|
| 42 |
retriever = vectorstore.as_retriever()
|
| 43 |
|
| 44 |
+
# Crea un objeto PromptTemplate con el prompt
|
| 45 |
+
template = ("""Tu eres un experto en mec谩nica automotriz, puedes responder preguntas sobre coches y motores.
|
|
|
|
|
|
|
|
|
|
| 46 |
Context: {context}
|
|
|
|
| 47 |
Question: {question}
|
|
|
|
| 48 |
Answer:""")
|
| 49 |
|
| 50 |
+
# Crea un objeto rag_prompt con el prompt
|
| 51 |
rag_prompt = PromptTemplate.from_template(template)
|
| 52 |
|
| 53 |
+
# Crea un objeto StrOutputParser para parsear la salida
|
| 54 |
from langchain_core.output_parsers import StrOutputParser
|
| 55 |
+
|
| 56 |
+
# Crea un objeto RunnablePassthrough para ejecutar el modelo
|
| 57 |
from langchain_core.runnables import RunnablePassthrough
|
| 58 |
|
| 59 |
+
# Crea un objeto rag_chain con el modelo y el prompt
|
| 60 |
rag_chain = (
|
| 61 |
{"context": retriever, "question": RunnablePassthrough()}
|
| 62 |
| rag_prompt
|
|
|
|
| 64 |
| StrOutputParser()
|
| 65 |
)
|
| 66 |
|
| 67 |
+
# Importa la biblioteca Gradio
|
| 68 |
import gradio as gr
|
| 69 |
|
| 70 |
+
# Crea una funci贸n para procesar la entrada del usuario
|
| 71 |
def rag_memory_stream(message, history):
|
| 72 |
partial_text = ""
|
| 73 |
for new_text in rag_chain.stream(message):
|
| 74 |
partial_text += new_text
|
| 75 |
yield partial_text
|
| 76 |
|
| 77 |
+
# Crea un objeto Gradio con la funci贸n y el t铆tulo
|
| 78 |
examples = [
|
| 79 |
+
"Mi coche no arranca, 驴qu茅 puedo hacer?",
|
| 80 |
+
"驴C贸mo puedo cambiar el aceite de mi coche?"
|
| 81 |
]
|
| 82 |
+
description = "Aplicaci贸n de IA en tiempo real para responder preguntas sobre mec谩nica automotriz"
|
| 83 |
+
title = "Experto en Mec谩nica Automotriz :)"
|
|
|
|
|
|
|
|
|
|
| 84 |
demo = gr.ChatInterface(fn=rag_memory_stream,
|
| 85 |
type="messages",
|
| 86 |
title=title,
|
|
|
|
| 90 |
theme="glass",
|
| 91 |
)
|
| 92 |
|
| 93 |
+
# Lanza la aplicaci贸n
|
| 94 |
if __name__ == "__main__":
|
| 95 |
+
demo.launch()
|