Spaces:
Sleeping
Sleeping
File size: 9,761 Bytes
c14d84c a46fd4b c14d84c 4e4c3a4 c14d84c 125913a c14d84c 4e4c3a4 c14d84c 4e4c3a4 c14d84c 4e4c3a4 125913a c14d84c 125913a c14d84c 125913a c14d84c e952cc2 a46fd4b 4e4c3a4 a46fd4b 4e4c3a4 00a24f4 a46fd4b c14d84c 661f7c4 c14d84c a46fd4b e952cc2 a46fd4b e952cc2 a46fd4b e952cc2 a46fd4b e952cc2 a46fd4b e952cc2 a46fd4b e952cc2 a46fd4b e952cc2 a46fd4b e952cc2 a46fd4b e952cc2 a46fd4b e952cc2 a46fd4b e952cc2 c14d84c a46fd4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import requests
import constants
import os
from PIL import Image
from gradio_client import Client
import moviepy.editor as mp
from moviepy.video.VideoClip import ImageClip
from moviepy.editor import AudioFileClip
from structured_output_extractor import StructuredOutputExtractor
from pydantic import BaseModel, Field
from typing import List
import tempfile
import os
def get_summarization(text: str):
print('\n\nSummarizing text: ', text, type(text))
# Input payload
data = {"text_input": text}
# Headers for authentication
headers = {"Authorization": f"Bearer {constants.HF_TOKEN}"}
try:
# Make a GET request
response = requests.post(constants.SUMMARIZATION_ENDPOINT, json=data, headers=headers)
# Process response
if response.status_code == 200:
response_data = response.json()
print("Returning Summarization")
return response_data.get("output", "No output found.")
else:
print("Some Error Occured During Summarization Request")
print(response)
print(f"Error: {response.status_code}, {response.text}")
return {"error_occured" : response.text}
except Exception as e:
print(f"An exception occurred: {e}")
return {"error_occured" : e}
def segments_to_chunks(segments):
chunks = []
for segment in segments:
chunks.append(segment.get("text"))
return chunks
def get_image_prompts(text_input : List, summary):
print(f"summary: {summary}")
# Example Pydantic model (e.g., Movie)
class ImagePromptResponseSchema(BaseModel):
image_prompts: List[str] = Field(
description="List of detailed image prompts, Each Image Prompt Per Chunk"
)
extractor = StructuredOutputExtractor(response_schema=ImagePromptResponseSchema)
chunks_count = len(text_input)
chunks = "chunk: " + "\nchunk: ".join(text_input)
prompt = f"""
ROLE: You are a Highly Experienced Image Prompt Synthesizer
SYSTEM PROMPT: Given the Overall Summary and All Chunks of the Text:
1. Read the summary and the combined context of all chunks (the entire script).
2. **Identify the central theme and setting** of the complete text.
3. For each chunk, examine both the chunk and its summary, then create a **focused, context-aware image prompt** based on key visual elements.
4. **Ensure thematic consistency across all chunks:**
- The environment, mood, and lighting must remain true to the established theme (e.g., a dark, eerie jungle remains consistently dark and mysterious throughout).
5. **Keep the image style as 3D (this MUST be followed).**
6. **Negatives:** Do not include hyper-realistic elements or real-life human depictions, and avoid any out-of-context settings (e.g., a park in a jungle story).
7. **Use mood-specific lighting and color palettes:**
- For example, if the theme is a dark jungle, use deep greens, blacks, misty blues, and dim moonlight.
- Ensure that all visual elements (fog, shadows, expressions) support the horror/suspense atmosphere.
8. NEVER generate prompts that could lead to NSFW images or any explicit content. Use safe and appropriate descriptions.
### Example:
**Summary:**
This text is a story of a man who ventured into a dark jungle and encountered a mysterious lion.
**Chunks:**
1. A man enters the dark jungle, mist swirling around him.
2. He comes face-to-face with a majestic yet eerie lion.
**Combined Context:**
"A man ventures into a dense, eerie jungle and unexpectedly meets a mysterious lion."
**Generated Prompts:**
- **Chunk 1:**
"[style: 3D | theme: dark jungle] A lone man steps into a dense, eerie jungle at twilight. Thick mist swirls around his feet as towering, twisted trees loom overhead. Dim, bluish moonlight filters through the foliage, casting long, haunting shadows."
- **Chunk 2:**
"[style: 3D | theme: dark jungle] In a clearing within the jungle, a majestic lion appears with an unsettling aura. Its eyes glow faintly in the dim light, and the surrounding trees seem to lean in, enhancing the mysterious tension."
TASK: Here is the summary: {summary}\n\n and \n\n Total of {chunks_count} chunks, generate an Image Prompt for each chunk\n\n {chunks}
"""
result = extractor.extract(prompt)
return result.model_dump() # returns dictionary version pydantic model
def generate_image(prompt, path='test_image.png'):
try:
# Initialize the Gradio Client with Hugging Face token
client = Client(constants.IMAGE_GENERATION_SPACE_NAME, hf_token=constants.HF_TOKEN)
# Make the API request
result = client.predict(
param_0=prompt, # Text prompt for image generation
api_name="/predict"
)
image = Image.open(result)
image.save(path)
# Return the result (which includes the URL or file path)
return result
except Exception as e:
print(f"Error during image generation: {e}")
return {"error": str(e)}
def generate_images(image_prompts, folder_name='test_folder'):
folder_path = tmp_folder(folder_name)
for index, prompt in enumerate(image_prompts):
print(index, prompt)
image_path = generate_image(prompt=prompt, path=f"{folder_path}/{index}.png")
yield prompt, image_path
def tmp_folder(folder_name: str) -> str:
# Use the current working directory or any other accessible path for temp folders
base_tmp_path = os.path.join(os.getcwd(), "tmp_dir") # Change this to any path you prefer
# Ensure that the base temp folder exists
if not os.path.exists(base_tmp_path):
os.makedirs(base_tmp_path)
print(f"Base temporary folder '{base_tmp_path}' created.")
# Define the path for the specific temporary folder
folder_path = os.path.join(base_tmp_path, folder_name)
# Create the specific temporary folder if it doesn't exist
os.makedirs(folder_path, exist_ok=True)
print(f"Temporary folder '{folder_name}' is ready at {folder_path}.")
return folder_path
from moviepy.editor import *
import os
import tempfile
from moviepy.editor import AudioFileClip, ImageClip, concatenate_videoclips
def generate_video(audio_file, images, segments):
try:
# Save the uploaded audio file to a temporary location
file_extension = os.path.splitext(audio_file.name)[1]
temp_audio_path = tempfile.NamedTemporaryFile(delete=False, suffix=f"{file_extension}")
temp_audio_path.write(audio_file.read())
temp_audio_path.close()
# Load the audio file using MoviePy
audio = AudioFileClip(temp_audio_path.name)
# Define YouTube-like dimensions (16:9 aspect ratio)
frame_width = 1280
frame_height = 720
video_clips = []
total_segments = len(segments)
for i, current_segment in enumerate(segments):
start_time = current_segment["start"]
end_time = current_segment["end"]
# Calculate the actual duration including any gap until the next segment
if i < total_segments - 1:
# If there's a next segment, extend until it starts
next_segment = segments[i + 1]
actual_end_time = next_segment["start"]
else:
# For the last segment, use its end time
actual_end_time = end_time
# Calculate total duration including any gap
segment_duration = actual_end_time - start_time
print(f"\nProcessing segment {i + 1}/{total_segments}:")
print(f" Start time: {start_time}s")
print(f" Base end time: {end_time}s")
print(f" Actual end time: {actual_end_time}s")
print(f" Total duration: {segment_duration}s")
print(f" Text: '{current_segment['text']}'")
# Ensure the image index is within bounds
image_path = images[min(i, len(images) - 1)]
# Create an ImageClip for the current segment
image_clip = ImageClip(image_path)
# Resize and pad the image to fit a 16:9 aspect ratio
image_clip = image_clip.resize(height=frame_height).on_color(
size=(frame_width, frame_height),
color=(0, 0, 0), # Black background
pos="center" # Center the image
)
# Set the duration and start time for the clip
image_clip = image_clip.set_duration(segment_duration)
image_clip = image_clip.set_start(start_time) # Set the start time explicitly
video_clips.append(image_clip)
# Concatenate all the image clips to form the video
print("Concatenating video clips...")
video = concatenate_videoclips(video_clips, method="compose")
# Add the audio to the video
video = video.set_audio(audio)
# Save the video to a temporary file
temp_dir = tempfile.gettempdir()
video_path = os.path.join(temp_dir, "generated_video.mp4")
print(f"Writing video file to {video_path}...")
video.write_videofile(video_path, fps=30, codec="libx264", audio_codec="aac")
# Clean up the temporary audio file
os.remove(temp_audio_path.name)
print("Temporary audio file removed.")
return video_path
except Exception as e:
print(f"Error generating video: {e}")
return None
# Example usage:
if __name__ == "__main__":
result = generate_images(["a guy in jungle", "a waterfall","greenery"])
|