Spaces:
Sleeping
Sleeping
File size: 9,228 Bytes
c14d84c a46fd4b c14d84c 125913a c14d84c 125913a c14d84c 125913a c14d84c 125913a c14d84c 125913a c14d84c 125913a c14d84c 125913a c14d84c 125913a c14d84c 125913a c14d84c e952cc2 a46fd4b 745e3b9 a46fd4b c14d84c 661f7c4 c14d84c a46fd4b e952cc2 a46fd4b e952cc2 a46fd4b e952cc2 a46fd4b e952cc2 a46fd4b e952cc2 a46fd4b e952cc2 a46fd4b e952cc2 a46fd4b e952cc2 a46fd4b e952cc2 a46fd4b e952cc2 a46fd4b e952cc2 c14d84c a46fd4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import requests
import constants
import os
from PIL import Image
from gradio_client import Client
import moviepy.editor as mp
from moviepy.video.VideoClip import ImageClip
from moviepy.editor import AudioFileClip
from structured_output_extractor import StructuredOutputExtractor
from pydantic import BaseModel, Field
from typing import List
import tempfile
import os
def clean_response(result):
print("\n\nStarted Cleaning Response")
"""A temporary fix to the output of predict which returns output of openai-whisper-large-v3-turbo as string
but it outputs: AutomaticSpeechRecognitionOutput(text=" sometimes life <- like this the class name still remains
in the response, ideally which should have started from "sometimes..." as in the given example """
# Use find() to get the position of the start and end of the text
start_pos = result.find('text="') + len('text="') # Start after 'text="'
end_pos = result.find('", chunks=None') # End before '", chunks=None'
# Extract the text using slicing
cleaned_result = result[start_pos:end_pos]
print("Returning Cleaned Result: ", cleaned_result)
return cleaned_result
def get_translation(text: str):
print('\n\nTranslating text: ', text, type(text))
# Input payload
data = {"text_input": text}
# Headers for authentication
headers = {"Authorization": f"Bearer {constants.HF_TOKEN}"}
try:
# Make a GET request
response = requests.post(constants.TRANSLATION_ENDPOINT, json=data, headers=headers)
# Process response
if response.status_code == 200:
response_data = response.json()
print("Returning Translation")
return response_data.get("output", "No output found.")
else:
print("Some Error Occured During Translation Request")
print(response)
print(f"Error: {response.status_code}, {response.text}")
return {"error_occured" : response.text}
except Exception as e:
print(f"An exception occurred: {e}")
return {"error_occured" : e}
def segments_to_chunks(segments):
chunks = []
for segment in segments:
chunks.append(segment.get("text"))
return chunks
def get_image_prompts(text_input : List):
# Example Pydantic model (e.g., Movie)
class ImagePromptResponseSchema(BaseModel):
image_prompts: List[str] = Field(
description="List of detailed image prompts, Each Image Prompt Per Chunk"
)
extractor = StructuredOutputExtractor(response_schema=ImagePromptResponseSchema)
chunks_count = len(text_input)
chunks = "chunk: " + "\nchunk: ".join(text_input)
prompt = f"""ROLE: You are a Highly Experienced Image Prompt Sythesizer
SYSTEM PROMPT:
1. **Combine all chunks** to understand the complete context.
2. **Identify the theme** and setting of the combined context.
3. For each chunk, **generate a simple, context-aware image prompt** that fits the overall picture.
- Keep it clear and vivid, adding small details to enhance the visual.
### Example
**Chunks**:
1. A guy went to the jungle.
2. He saw a lion.
**Combined Context**:
"A man ventured into a jungle and encountered a lion."
**Prompts**:
- **Chunk 1**: "A man walking into a dense, green jungle, with tall trees and sunlight filtering through the leaves."
- **Chunk 2**: "In a jungle clearing, a lion stands majestically, its golden mane glowing in the soft sunlight as it watches the man silently."
NOTE: Never write a prompt that can generate NSFW images, or any other explicit content, use safe and appropriate prompts
TASK: Generate {chunks_count} image prompts, Each per chunk\n\n {chunks}"""
result = extractor.extract(prompt)
return result.model_dump() # returns dictionary version pydantic model
def generate_image(prompt, path='test_image.png'):
try:
# Initialize the Gradio Client with Hugging Face token
client = Client(constants.IMAGE_GENERATION_SPACE_NAME, hf_token=constants.HF_TOKEN)
# Make the API request
result = client.predict(
param_0=prompt, # Text prompt for image generation
api_name="/predict"
)
image = Image.open(result)
image.save(path)
# Return the result (which includes the URL or file path)
return result
except Exception as e:
print(f"Error during image generation: {e}")
return {"error": str(e)}
def generate_images(image_prompts, folder_name='test_folder'):
folder_path = tmp_folder(folder_name)
for index, prompt in enumerate(image_prompts):
print(index, prompt)
image_path = generate_image(prompt=prompt, path=f"{folder_path}/{index}.png")
yield prompt, image_path
def tmp_folder(folder_name: str) -> str:
# Use the current working directory or any other accessible path for temp folders
base_tmp_path = os.path.join(os.getcwd(), "tmp_dir") # Change this to any path you prefer
# Ensure that the base temp folder exists
if not os.path.exists(base_tmp_path):
os.makedirs(base_tmp_path)
print(f"Base temporary folder '{base_tmp_path}' created.")
# Define the path for the specific temporary folder
folder_path = os.path.join(base_tmp_path, folder_name)
# Create the specific temporary folder if it doesn't exist
os.makedirs(folder_path, exist_ok=True)
print(f"Temporary folder '{folder_name}' is ready at {folder_path}.")
return folder_path
from moviepy.editor import *
import os
import tempfile
from moviepy.editor import AudioFileClip, ImageClip, concatenate_videoclips
def generate_video(audio_file, images, segments):
try:
# Save the uploaded audio file to a temporary location
file_extension = os.path.splitext(audio_file.name)[1]
temp_audio_path = tempfile.NamedTemporaryFile(delete=False, suffix=f"{file_extension}")
temp_audio_path.write(audio_file.read())
temp_audio_path.close()
# Load the audio file using MoviePy
audio = AudioFileClip(temp_audio_path.name)
# Define YouTube-like dimensions (16:9 aspect ratio)
frame_width = 1280
frame_height = 720
video_clips = []
total_segments = len(segments)
for i, current_segment in enumerate(segments):
start_time = current_segment["start"]
end_time = current_segment["end"]
# Calculate the actual duration including any gap until the next segment
if i < total_segments - 1:
# If there's a next segment, extend until it starts
next_segment = segments[i + 1]
actual_end_time = next_segment["start"]
else:
# For the last segment, use its end time
actual_end_time = end_time
# Calculate total duration including any gap
segment_duration = actual_end_time - start_time
print(f"\nProcessing segment {i + 1}/{total_segments}:")
print(f" Start time: {start_time}s")
print(f" Base end time: {end_time}s")
print(f" Actual end time: {actual_end_time}s")
print(f" Total duration: {segment_duration}s")
print(f" Text: '{current_segment['text']}'")
# Ensure the image index is within bounds
image_path = images[min(i, len(images) - 1)]
# Create an ImageClip for the current segment
image_clip = ImageClip(image_path)
# Resize and pad the image to fit a 16:9 aspect ratio
image_clip = image_clip.resize(height=frame_height).on_color(
size=(frame_width, frame_height),
color=(0, 0, 0), # Black background
pos="center" # Center the image
)
# Set the duration and start time for the clip
image_clip = image_clip.set_duration(segment_duration)
image_clip = image_clip.set_start(start_time) # Set the start time explicitly
video_clips.append(image_clip)
# Concatenate all the image clips to form the video
print("Concatenating video clips...")
video = concatenate_videoclips(video_clips, method="compose")
# Add the audio to the video
video = video.set_audio(audio)
# Save the video to a temporary file
temp_dir = tempfile.gettempdir()
video_path = os.path.join(temp_dir, "generated_video.mp4")
print(f"Writing video file to {video_path}...")
video.write_videofile(video_path, fps=30, codec="libx264", audio_codec="aac")
# Clean up the temporary audio file
os.remove(temp_audio_path.name)
print("Temporary audio file removed.")
return video_path
except Exception as e:
print(f"Error generating video: {e}")
return None
# Example usage:
if __name__ == "__main__":
result = generate_images(["a guy in jungle", "a waterfall","greenery"])
|