import requests import constants import os from PIL import Image from gradio_client import Client def clean_response(result): """A temporary fix to the output of predict which returns output of openai-whisper-large-v3-turbo as string but it outputs: AutomaticSpeechRecognitionOutput(text=" sometimes life <- like this the class name still remains in the response, ideally which should have started from "sometimes..." as in the given example """ # Use find() to get the position of the start and end of the text start_pos = result.find('text="') + len('text="') # Start after 'text="' end_pos = result.find('", chunks=None') # End before '", chunks=None' # Extract the text using slicing cleaned_result = result[start_pos:end_pos] return cleaned_result def get_translation(text: str): # Input payload params = {"text": text} # Headers for authentication headers = {"Authorization": f"Bearer {constants.HF_TOKEN}"} try: # Make a GET request response = requests.get(constants.TRANSLATION_ENDPOINT, params=params, headers=headers) # Process response if response.status_code == 200: response_data = response.json() return response_data.get("output", "No output found.") else: print(f"Error: {response.status_code}, {response.text}") return None except Exception as e: print(f"An exception occurred: {e}") return None def get_image_prompts(text_input): headers = { "Authorization": f"Bearer {constants.HF_TOKEN}", # Replace with your token "Content-Type": "application/json" # Optional, ensures JSON payload } endpoint = f"{constants.PROMPT_GENERATION_ENDPOINT}" payload = {"text_input": text_input} try: # Send the POST request print("making post request for image prompts", endpoint) response = requests.post(endpoint, json=payload, headers=headers) # Raise an exception for HTTP errors response.raise_for_status() # Parse JSON response result = response.json() return result except requests.exceptions.RequestException as e: print(f"Error during request: {e}") return {"error": str(e)} def generate_image(prompt, path='test_image.png'): try: # Initialize the Gradio Client with Hugging Face token client = Client(constants.IMAGE_GENERATION_SPACE_NAME, hf_token=constants.HF_TOKEN) # Make the API request result = client.predict( param_0=prompt, # Text prompt for image generation api_name="/predict" ) image = Image.open(result) image.save(path) # Return the result (which includes the URL or file path) return result except Exception as e: print(f"Error during image generation: {e}") return {"error": str(e)} def generate_images(image_prompts, folder_name='test_folder'): folder_path = tmp_folder(folder_name) for index, prompt in enumerate(image_prompts): print(index, prompt) generate_image(prompt=prompt, path=f"{folder_path}/{index}.png") return folder_path def tmp_folder(folder_name: str) -> str: # Use the current working directory or any other accessible path for temp folders base_tmp_path = os.path.join(os.getcwd(), "tmp_dir") # Change this to any path you prefer # Ensure that the base temp folder exists if not os.path.exists(base_tmp_path): os.makedirs(base_tmp_path) print(f"Base temporary folder '{base_tmp_path}' created.") # Define the path for the specific temporary folder folder_path = os.path.join(base_tmp_path, folder_name) # Create the specific temporary folder if it doesn't exist os.makedirs(folder_path, exist_ok=True) print(f"Temporary folder '{folder_name}' is ready at {folder_path}.") return folder_path def generate_video(image_folder, audio): return os.path.join(os.getcwd(), "test.mp4") # Example usage: if __name__ == "__main__": result = generate_images(["a guy in jungle", "a waterfall","greenery"]) print(result,'is the result')