Spaces:
Runtime error
Runtime error
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments | |
from datasets import load_dataset | |
import gradio as gr | |
import torch | |
# Cargar el modelo y el tokenizador | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large") | |
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large") | |
# Cargar tu conjunto de datos | |
try: | |
dataset = load_dataset('csv', data_files='alpaca.csv') | |
print("Conjunto de datos cargado correctamente.") | |
except Exception as e: | |
print(f"Error al cargar el conjunto de datos: {e}") | |
# Preprocesar los datos | |
def preprocess_function(examples): | |
inputs = [ex for ex in examples['input_text']] | |
outputs = [ex for ex in examples['response_text']] | |
model_inputs = tokenizer(inputs, max_length=512, truncation=True) | |
# Configurar las etiquetas | |
with tokenizer.as_target_tokenizer(): | |
labels = tokenizer(outputs, max_length=512, truncation=True) | |
model_inputs["labels"] = labels["input_ids"] | |
return model_inputs | |
tokenized_dataset = dataset.map(preprocess_function, batched=True) | |
# Configurar los argumentos de entrenamiento | |
training_args = TrainingArguments( | |
output_dir="./results", | |
evaluation_strategy="epoch", | |
learning_rate=2e-5, | |
per_device_train_batch_size=2, | |
num_train_epochs=3, | |
) | |
# Crear el Trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=tokenized_dataset['train'], | |
) | |
# Entrenar el modelo | |
trainer.train() | |
# Guardar el modelo entrenado | |
model.save_pretrained("./mi_modelo_entrenado") | |
tokenizer.save_pretrained("./mi_modelo_entrenado") | |
# Cargar el modelo entrenado | |
model = AutoModelForCausalLM.from_pretrained("./mi_modelo_entrenado") | |
tokenizer = AutoTokenizer.from_pretrained("./mi_modelo_entrenado") | |
# Inicializar el historial de conversaciΓ³n | |
chat_history_ids = None | |
# FunciΓ³n de chat | |
def chat_with_bot(user_input): | |
global chat_history_ids | |
try: | |
new_user_input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt') | |
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if chat_history_ids is not None else new_user_input_ids | |
chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) | |
response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) | |
# Si la respuesta es vacΓa o no tiene sentido, devuelve una respuesta predeterminada | |
if not response.strip(): | |
return "Lo siento, no entiendo la pregunta." | |
return response | |
except Exception as e: | |
return f"Error: {e}. No pude procesar tu pregunta." | |
# Crear la interfaz de Gradio | |
iface = gr.Interface(fn=chat_with_bot, inputs="text", outputs="text", title="Chatbot Entrenado") | |
iface.launch() | |