botboss2 / app.py
gnosticdev's picture
Update app.py
3f3b45a verified
raw
history blame
2.85 kB
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
from datasets import load_dataset
import gradio as gr
import torch
# Cargar el modelo y el tokenizador
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large")
# Cargar tu conjunto de datos
try:
dataset = load_dataset('csv', data_files='alpaca.csv')
print("Conjunto de datos cargado correctamente.")
except Exception as e:
print(f"Error al cargar el conjunto de datos: {e}")
# Preprocesar los datos
def preprocess_function(examples):
inputs = [ex for ex in examples['input_text']]
outputs = [ex for ex in examples['response_text']]
model_inputs = tokenizer(inputs, max_length=512, truncation=True)
# Configurar las etiquetas
with tokenizer.as_target_tokenizer():
labels = tokenizer(outputs, max_length=512, truncation=True)
model_inputs["labels"] = labels["input_ids"]
return model_inputs
tokenized_dataset = dataset.map(preprocess_function, batched=True)
# Configurar los argumentos de entrenamiento
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="epoch",
learning_rate=2e-5,
per_device_train_batch_size=2,
num_train_epochs=3,
)
# Crear el Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset['train'],
)
# Entrenar el modelo
trainer.train()
# Guardar el modelo entrenado
model.save_pretrained("./mi_modelo_entrenado")
tokenizer.save_pretrained("./mi_modelo_entrenado")
# Cargar el modelo entrenado
model = AutoModelForCausalLM.from_pretrained("./mi_modelo_entrenado")
tokenizer = AutoTokenizer.from_pretrained("./mi_modelo_entrenado")
# Inicializar el historial de conversaciΓ³n
chat_history_ids = None
# FunciΓ³n de chat
def chat_with_bot(user_input):
global chat_history_ids
try:
new_user_input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt')
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if chat_history_ids is not None else new_user_input_ids
chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
# Si la respuesta es vacΓ­a o no tiene sentido, devuelve una respuesta predeterminada
if not response.strip():
return "Lo siento, no entiendo la pregunta."
return response
except Exception as e:
return f"Error: {e}. No pude procesar tu pregunta."
# Crear la interfaz de Gradio
iface = gr.Interface(fn=chat_with_bot, inputs="text", outputs="text", title="Chatbot Entrenado")
iface.launch()