Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
from diffusers import StableDiffusionInpaintPipeline, StableDiffusionUpscalePipeline
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
def process_image(image, prompt, mode, scale_factor=2):
|
8 |
+
if mode == "upscale":
|
9 |
+
# Upscale pipeline
|
10 |
+
pipeline = StableDiffusionUpscalePipeline.from_pretrained(
|
11 |
+
"stabilityai/stable-diffusion-x4-upscaler"
|
12 |
+
)
|
13 |
+
pipeline.to("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
|
15 |
+
# Process image
|
16 |
+
upscaled_image = pipeline(
|
17 |
+
prompt=prompt,
|
18 |
+
image=image,
|
19 |
+
noise_level=20,
|
20 |
+
num_inference_steps=20
|
21 |
+
).images[0]
|
22 |
+
|
23 |
+
return upscaled_image
|
24 |
+
|
25 |
+
elif mode == "inpaint":
|
26 |
+
# Inpainting pipeline
|
27 |
+
pipeline = StableDiffusionInpaintPipeline.from_pretrained(
|
28 |
+
"runwayml/stable-diffusion-inpainting"
|
29 |
+
)
|
30 |
+
pipeline.to("cuda" if torch.cuda.is_available() else "cpu")
|
31 |
+
|
32 |
+
# Create mask for extending the image
|
33 |
+
width, height = image.size
|
34 |
+
mask = Image.new('RGB', (width, height), 'white')
|
35 |
+
|
36 |
+
# Process image
|
37 |
+
result = pipeline(
|
38 |
+
prompt=prompt,
|
39 |
+
image=image,
|
40 |
+
mask_image=mask,
|
41 |
+
num_inference_steps=20
|
42 |
+
).images[0]
|
43 |
+
|
44 |
+
return result
|
45 |
+
|
46 |
+
# Gradio Interface
|
47 |
+
def create_interface():
|
48 |
+
with gr.Blocks(title="AI Image Enhancement") as interface:
|
49 |
+
gr.Markdown("# AI Image Enhancement Studio")
|
50 |
+
gr.Markdown("Enhance, upscale, and recreate images using AI")
|
51 |
+
|
52 |
+
with gr.Row():
|
53 |
+
with gr.Column():
|
54 |
+
input_image = gr.Image(type="pil", label="Upload Image")
|
55 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Describe the desired enhancement...")
|
56 |
+
mode = gr.Radio(
|
57 |
+
choices=["upscale", "inpaint"],
|
58 |
+
label="Processing Mode",
|
59 |
+
value="upscale"
|
60 |
+
)
|
61 |
+
scale_factor = gr.Slider(
|
62 |
+
minimum=2,
|
63 |
+
maximum=8,
|
64 |
+
step=2,
|
65 |
+
label="Upscale Factor",
|
66 |
+
value=2
|
67 |
+
)
|
68 |
+
process_btn = gr.Button("Process Image")
|
69 |
+
|
70 |
+
with gr.Column():
|
71 |
+
output_image = gr.Image(type="pil", label="Enhanced Result")
|
72 |
+
|
73 |
+
process_btn.click(
|
74 |
+
fn=process_image,
|
75 |
+
inputs=[input_image, prompt, mode, scale_factor],
|
76 |
+
outputs=output_image
|
77 |
+
)
|
78 |
+
|
79 |
+
return interface
|
80 |
+
|
81 |
+
if __name__ == "__main__":
|
82 |
+
interface = create_interface()
|
83 |
+
interface.launch()
|