Spaces:
Building
Building
import requests_proxy | |
import gradio as gr | |
from tts_module import get_voices, text_to_speech | |
from moviepy.editor import ( | |
AudioFileClip, ImageClip, CompositeAudioClip, | |
concatenate_audioclips, concatenate_videoclips, vfx, CompositeVideoClip, | |
ColorClip | |
) | |
import asyncio | |
import os | |
import json | |
import time | |
import requests | |
import random | |
from googleapiclient.discovery import build | |
from google.oauth2 import service_account | |
from googleapiclient.http import MediaFileUpload | |
from io import BytesIO | |
from PIL import Image | |
import numpy as np | |
MIN_WIDTH = 1920 | |
MIN_HEIGHT = 1080 | |
TARGET_ASPECT_RATIO = 16 / 9 | |
output_folder = "outputs" | |
temp_dir = "temp_files" | |
os.makedirs(output_folder, exist_ok=True) | |
os.makedirs(temp_dir, exist_ok=True) | |
FOLDER_ID = "12S6adpanAXjf71pKKGRRPqpzbJa5XEh3" | |
# Función para cargar proxies desde un archivo | |
def load_proxies(proxy_file="proxys.txt"): | |
try: | |
with open(proxy_file, 'r') as f: | |
proxies = [line.strip() for line in f if line.strip()] | |
print(f"Loaded {len(proxies)} proxies from file") | |
return [{"http": f"http://{proxy}", "https": f"http://{proxy}"} for proxy in proxies] | |
except Exception as e: | |
print(f"Error loading proxies: {e}") | |
return [] | |
# Función para buscar imágenes en Google Custom Search API | |
def search_google_images(query, num_images=1): | |
try: | |
api_key = os.getenv('GOOGLE_API_KEY') | |
cse_id = os.getenv('GOOGLE_CSE_ID') | |
proxies = load_proxies() | |
print(f"Buscando imágenes para: {query}") | |
# Intenta con proxies si están disponibles | |
if proxies: | |
for proxy in proxies: | |
try: | |
print(f"Trying with proxy: {proxy['http']}") | |
result = requests.get( | |
"https://www.googleapis.com/customsearch/v1", | |
params={ | |
"q": query, | |
"cx": cse_id, | |
"searchType": "image", | |
"num": num_images * 3, | |
"safe": "off", | |
"imgSize": "LARGE", | |
"rights": "cc_publicdomain|cc_attribute|cc_sharealike", | |
"key": api_key | |
}, | |
proxies=proxy, | |
timeout=10 | |
).json() | |
break # Sale del bucle si la solicitud es exitosa | |
except Exception as e: | |
print(f"Error using proxy {proxy['http']}: {e}") | |
continue | |
else: | |
print("No proxies available, trying without proxy") | |
result = requests.get( | |
"https://www.googleapis.com/customsearch/v1", | |
params={ | |
"q": query, | |
"cx": cse_id, | |
"searchType": "image", | |
"num": num_images * 3, | |
"safe": "off", | |
"imgSize": "LARGE", | |
"rights": "cc_publicdomain|cc_attribute|cc_sharealike", | |
"key": api_key | |
}, | |
timeout=10 | |
).json() | |
if 'items' in result: | |
image_urls = [] | |
for item in result.get('items', []): | |
if 'image' in item: | |
width = int(item['image'].get('width', 0)) | |
height = int(item['image'].get('height', 0)) | |
if width >= MIN_WIDTH and height >= MIN_HEIGHT: | |
image_urls.append(item['link']) | |
if len(image_urls) >= num_images: | |
break | |
print(f"Encontradas {len(image_urls)} imágenes de tamaño adecuado") | |
return image_urls | |
print("No se encontraron imágenes después de probar todos los proxies") | |
return [] | |
except Exception as e: | |
print(f"Error general en la búsqueda de imágenes: {str(e)}") | |
return [] | |
# Procesa una imagen para ajustar su tamaño | |
def process_image(image): | |
try: | |
width, height = image.size | |
current_ratio = width / height | |
if current_ratio > TARGET_ASPECT_RATIO: | |
new_width = max(MIN_WIDTH, width) | |
new_height = int(new_width / TARGET_ASPECT_RATIO) | |
else: | |
new_height = max(MIN_HEIGHT, height) | |
new_width = int(new_height * TARGET_ASPECT_RATIO) | |
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS) | |
background = Image.new('RGB', (max(new_width, MIN_WIDTH), max(new_height, MIN_HEIGHT)), 'black') | |
offset = ((background.width - image.width) // 2, (background.height - image.height) // 2) | |
background.paste(image, offset) | |
return background | |
except Exception as e: | |
print(f"Error processing image: {e}") | |
return None | |
# Descarga una imagen desde una URL | |
def download_image(url): | |
proxies = load_proxies() | |
if not proxies: | |
proxies = [None] | |
for proxy in proxies: | |
try: | |
response = requests.get(url, proxies=proxy, timeout=10) | |
image = Image.open(BytesIO(response.content)) | |
if image.mode in ('RGBA', 'LA') or (image.mode == 'P' and 'transparency' in image.info): | |
background = Image.new('RGB', image.size, (0, 0, 0)) | |
background.paste(image, mask=image.split()[-1]) | |
image = background | |
processed_image = process_image(image) | |
if processed_image: | |
return processed_image | |
except Exception as e: | |
print(f"Error downloading image with proxy {proxy}: {e}") | |
continue | |
return None | |
# Crea un clip animado a partir de una imagen | |
def create_animated_clip(image, duration=5, zoom_factor=1.1): | |
img_array = np.array(image) | |
img_clip = ImageClip(img_array).set_duration(duration) | |
if img_clip.size[0] < MIN_WIDTH or img_clip.size[1] < MIN_HEIGHT: | |
img_clip = img_clip.resize(width=MIN_WIDTH, height=MIN_HEIGHT) | |
return img_clip.resize(lambda t: 1 + (zoom_factor - 1) * t / duration) | |
# Concatena clips de video basados en palabras clave | |
def concatenate_google_images(keywords, clip_duration=5, num_images_per_keyword=1): | |
keyword_list = [keyword.strip() for keyword in keywords.split(",") if keyword.strip()] | |
if not keyword_list: | |
keyword_list = ["nature"] | |
video_clips = [] | |
for keyword in keyword_list: | |
try: | |
print(f"Searching images for keyword '{keyword}'...") | |
image_urls = search_google_images(keyword, num_images=num_images_per_keyword) | |
for url in image_urls: | |
image = download_image(url) | |
if image: | |
clip = create_animated_clip(image, duration=clip_duration) | |
video_clips.append(clip) | |
time.sleep(1) | |
except Exception as e: | |
print(f"Error processing keyword '{keyword}': {e}") | |
continue | |
if not video_clips: | |
return ColorClip(size=(MIN_WIDTH, MIN_HEIGHT), color=[0, 0, 0], duration=5) | |
random.shuffle(video_clips) | |
return concatenate_videoclips(video_clips, method="compose") | |
# Ajusta la música de fondo para que coincida con la duración del video | |
def adjust_background_music(video_duration, music_file): | |
try: | |
music = AudioFileClip(music_file) | |
if music.duration < video_duration: | |
repetitions = int(video_duration / music.duration) + 1 | |
music_clips = [music] * repetitions | |
music = concatenate_audioclips(music_clips) | |
music = music.subclip(0, video_duration) | |
return music.volumex(0.2) | |
except Exception as e: | |
print(f"Error adjusting music: {e}") | |
return None | |
# Combina audio y video en un solo archivo | |
def combine_audio_video(audio_file, video_clip, music_clip=None): | |
try: | |
audio_clip = AudioFileClip(audio_file) | |
total_duration = audio_clip.duration + 2 | |
video_clip = video_clip.loop(duration=total_duration) | |
video_clip = video_clip.set_duration(total_duration).fadeout(2) | |
final_clip = video_clip.set_audio(audio_clip) | |
if music_clip: | |
music_clip = music_clip.set_duration(total_duration).audio_fadeout(2) | |
final_clip = final_clip.set_audio(CompositeAudioClip([audio_clip, music_clip])) | |
output_filename = f"final_video_{int(time.time())}.mp4" | |
output_path = os.path.join(output_folder, output_filename) | |
final_clip.write_videofile(output_path, codec="libx264", audio_codec="aac", fps=24) | |
final_clip.close() | |
video_clip.close() | |
audio_clip.close() | |
if music_clip: | |
music_clip.close() | |
return output_path | |
except Exception as e: | |
print(f"Error combining audio and video: {e}") | |
if 'final_clip' in locals(): | |
final_clip.close() | |
return None | |
# Sube un archivo al Google Drive | |
def upload_to_google_drive(file_path, folder_id): | |
try: | |
creds = service_account.Credentials.from_service_account_info( | |
json.loads(os.getenv('GOOGLE_SERVICE_ACCOUNT')), | |
scopes=['https://www.googleapis.com/auth/drive'] | |
) | |
service = build('drive', 'v3', credentials=creds) | |
file_metadata = { | |
'name': os.path.basename(file_path), | |
'parents': [folder_id] | |
} | |
media = MediaFileUpload(file_path, resumable=True) | |
file = service.files().create(body=file_metadata, media_body=media, fields='id').execute() | |
permission = { | |
'type': 'anyone', | |
'role': 'reader' | |
} | |
service.permissions().create(fileId=file['id'], body=permission).execute() | |
file_id = file['id'] | |
download_link = f"https://drive.google.com/uc?export=download&id={file_id}" | |
return download_link | |
except Exception as e: | |
print(f"Error uploading to Google Drive: {e}") | |
return None | |
# Limpia archivos temporales | |
def cleanup_temp_files(): | |
try: | |
if os.path.exists(temp_dir) and os.path.isdir(temp_dir): | |
shutil.rmtree(temp_dir) | |
os.makedirs(temp_dir, exist_ok=True) | |
print("Temporal files cleaned up successfully.") | |
except Exception as e: | |
print(f"Error cleaning up temporary files: {e}") | |
# Procesa la entrada del usuario y genera el video | |
def process_input(text, txt_file, mp3_file, selected_voice, rate, pitch, keywords): | |
try: | |
if text.strip(): | |
final_text = text | |
elif txt_file is not None: | |
final_text = txt_file.decode("utf-8") | |
else: | |
raise ValueError("No text input provided") | |
audio_file = asyncio.run(text_to_speech(final_text, selected_voice, rate, pitch)) | |
if not audio_file: | |
raise ValueError("Failed to generate audio") | |
video_clip = concatenate_google_images(keywords, clip_duration=5, num_images_per_keyword=1) | |
if not video_clip: | |
raise ValueError("Failed to generate video") | |
music_clip = None | |
if mp3_file is not None: | |
music_clip = adjust_background_music(video_clip.duration, mp3_file.name) | |
final_video_path = combine_audio_video(audio_file, video_clip, music_clip) | |
if not final_video_path: | |
raise ValueError("Failed to combine audio and video") | |
download_link = upload_to_google_drive(final_video_path, folder_id=FOLDER_ID) | |
if download_link: | |
return f"[Download video]({download_link})" | |
else: | |
raise ValueError("Error uploading video to Google Drive") | |
except Exception as e: | |
print(f"Error during processing: {e}") | |
return None | |
finally: | |
cleanup_temp_files() | |
# Interfaz Gradio | |
with gr.Blocks() as demo: | |
gr.Markdown("# Text-to-Video Generator") | |
with gr.Row(): | |
with gr.Column(): | |
text_input = gr.Textbox(label="Write your text here", lines=5) | |
txt_file_input = gr.File(label="Or upload a .txt file", file_types=[".txt"]) | |
mp3_file_input = gr.File(label="Upload background music (.mp3)", file_types=[".mp3"]) | |
keyword_input = gr.Textbox( | |
label="Enter keywords separated by commas", | |
value="nature, landscape, city, people" | |
) | |
voices = asyncio.run(get_voices()) | |
voice_dropdown = gr.Dropdown(choices=list(voices.keys()), label="Select Voice") | |
rate_slider = gr.Slider(minimum=-50, maximum=50, value=0, label="Speech Rate Adjustment (%)", step=1) | |
pitch_slider = gr.Slider(minimum=-20, maximum=20, value=0, label="Pitch Adjustment (Hz)", step=1) | |
with gr.Column(): | |
output_link = gr.Markdown("") | |
btn = gr.Button("Generate Video") | |
btn.click( | |
process_input, | |
inputs=[text_input, txt_file_input, mp3_file_input, voice_dropdown, rate_slider, pitch_slider, keyword_input], | |
outputs=output_link | |
) | |
port = int(os.getenv("PORT", 7860)) | |
demo.launch(server_name="0.0.0.0", server_port=port, share=True, show_error=True) |