Spaces:
Building
Building
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import
|
2 |
import gradio as gr
|
3 |
from tts_module import get_voices, text_to_speech
|
4 |
from moviepy.editor import (
|
@@ -10,7 +10,6 @@ import asyncio
|
|
10 |
import os
|
11 |
import json
|
12 |
import time
|
13 |
-
import requests
|
14 |
import random
|
15 |
from googleapiclient.discovery import build
|
16 |
from google.oauth2 import service_account
|
@@ -21,7 +20,7 @@ import numpy as np
|
|
21 |
|
22 |
MIN_WIDTH = 1920
|
23 |
MIN_HEIGHT = 1080
|
24 |
-
TARGET_ASPECT_RATIO = 16/9
|
25 |
|
26 |
output_folder = "outputs"
|
27 |
temp_dir = "temp_files"
|
@@ -30,58 +29,67 @@ os.makedirs(temp_dir, exist_ok=True)
|
|
30 |
|
31 |
FOLDER_ID = "12S6adpanAXjf71pKKGRRPqpzbJa5XEh3"
|
32 |
|
|
|
33 |
def load_proxies(proxy_file="proxys.txt"):
|
34 |
try:
|
35 |
with open(proxy_file, 'r') as f:
|
36 |
proxies = [line.strip() for line in f if line.strip()]
|
37 |
print(f"Loaded {len(proxies)} proxies from file")
|
38 |
-
return [
|
39 |
except Exception as e:
|
40 |
print(f"Error loading proxies: {e}")
|
41 |
return []
|
42 |
-
|
|
|
43 |
def search_google_images(query, num_images=1):
|
44 |
try:
|
45 |
api_key = os.getenv('GOOGLE_API_KEY')
|
46 |
cse_id = os.getenv('GOOGLE_CSE_ID')
|
47 |
proxies = load_proxies()
|
48 |
-
|
49 |
print(f"Buscando imágenes para: {query}")
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
f"
|
56 |
-
|
57 |
-
"
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
else:
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
if 'items' in result:
|
86 |
image_urls = []
|
87 |
for item in result.get('items', []):
|
@@ -92,79 +100,81 @@ def search_google_images(query, num_images=1):
|
|
92 |
image_urls.append(item['link'])
|
93 |
if len(image_urls) >= num_images:
|
94 |
break
|
95 |
-
|
96 |
print(f"Encontradas {len(image_urls)} imágenes de tamaño adecuado")
|
97 |
return image_urls
|
98 |
-
|
99 |
print("No se encontraron imágenes después de probar todos los proxies")
|
100 |
return []
|
101 |
-
|
102 |
except Exception as e:
|
103 |
print(f"Error general en la búsqueda de imágenes: {str(e)}")
|
104 |
return []
|
105 |
|
|
|
106 |
def process_image(image):
|
107 |
try:
|
108 |
width, height = image.size
|
109 |
current_ratio = width / height
|
110 |
-
|
111 |
if current_ratio > TARGET_ASPECT_RATIO:
|
112 |
new_width = max(MIN_WIDTH, width)
|
113 |
new_height = int(new_width / TARGET_ASPECT_RATIO)
|
114 |
else:
|
115 |
new_height = max(MIN_HEIGHT, height)
|
116 |
new_width = int(new_height * TARGET_ASPECT_RATIO)
|
117 |
-
|
118 |
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
119 |
background = Image.new('RGB', (max(new_width, MIN_WIDTH), max(new_height, MIN_HEIGHT)), 'black')
|
120 |
-
|
121 |
-
offset = ((background.width - image.width) // 2,
|
122 |
-
(background.height - image.height) // 2)
|
123 |
background.paste(image, offset)
|
124 |
-
|
125 |
return background
|
126 |
except Exception as e:
|
127 |
print(f"Error processing image: {e}")
|
128 |
return None
|
129 |
|
|
|
130 |
def download_image(url):
|
131 |
proxies = load_proxies()
|
132 |
if not proxies:
|
133 |
proxies = [None]
|
134 |
-
|
135 |
for proxy in proxies:
|
136 |
try:
|
137 |
response = requests.get(url, proxies=proxy, timeout=10)
|
138 |
image = Image.open(BytesIO(response.content))
|
139 |
-
|
140 |
if image.mode in ('RGBA', 'LA') or (image.mode == 'P' and 'transparency' in image.info):
|
141 |
background = Image.new('RGB', image.size, (0, 0, 0))
|
142 |
background.paste(image, mask=image.split()[-1])
|
143 |
image = background
|
144 |
-
|
145 |
processed_image = process_image(image)
|
146 |
if processed_image:
|
147 |
return processed_image
|
148 |
-
|
149 |
except Exception as e:
|
150 |
print(f"Error downloading image with proxy {proxy}: {e}")
|
151 |
continue
|
152 |
return None
|
153 |
|
|
|
154 |
def create_animated_clip(image, duration=5, zoom_factor=1.1):
|
155 |
img_array = np.array(image)
|
156 |
img_clip = ImageClip(img_array).set_duration(duration)
|
157 |
-
|
158 |
if img_clip.size[0] < MIN_WIDTH or img_clip.size[1] < MIN_HEIGHT:
|
159 |
img_clip = img_clip.resize(width=MIN_WIDTH, height=MIN_HEIGHT)
|
160 |
-
|
161 |
return img_clip.resize(lambda t: 1 + (zoom_factor - 1) * t / duration)
|
162 |
|
|
|
163 |
def concatenate_google_images(keywords, clip_duration=5, num_images_per_keyword=1):
|
164 |
keyword_list = [keyword.strip() for keyword in keywords.split(",") if keyword.strip()]
|
165 |
if not keyword_list:
|
166 |
keyword_list = ["nature"]
|
167 |
-
|
168 |
video_clips = []
|
169 |
for keyword in keyword_list:
|
170 |
try:
|
@@ -179,13 +189,14 @@ def concatenate_google_images(keywords, clip_duration=5, num_images_per_keyword=
|
|
179 |
except Exception as e:
|
180 |
print(f"Error processing keyword '{keyword}': {e}")
|
181 |
continue
|
182 |
-
|
183 |
if not video_clips:
|
184 |
return ColorClip(size=(MIN_WIDTH, MIN_HEIGHT), color=[0, 0, 0], duration=5)
|
185 |
-
|
186 |
random.shuffle(video_clips)
|
187 |
return concatenate_videoclips(video_clips, method="compose")
|
188 |
|
|
|
189 |
def adjust_background_music(video_duration, music_file):
|
190 |
try:
|
191 |
music = AudioFileClip(music_file)
|
@@ -199,30 +210,31 @@ def adjust_background_music(video_duration, music_file):
|
|
199 |
print(f"Error adjusting music: {e}")
|
200 |
return None
|
201 |
|
|
|
202 |
def combine_audio_video(audio_file, video_clip, music_clip=None):
|
203 |
try:
|
204 |
audio_clip = AudioFileClip(audio_file)
|
205 |
total_duration = audio_clip.duration + 2
|
206 |
-
|
207 |
video_clip = video_clip.loop(duration=total_duration)
|
208 |
video_clip = video_clip.set_duration(total_duration).fadeout(2)
|
209 |
-
|
210 |
final_clip = video_clip.set_audio(audio_clip)
|
211 |
if music_clip:
|
212 |
music_clip = music_clip.set_duration(total_duration).audio_fadeout(2)
|
213 |
final_clip = final_clip.set_audio(CompositeAudioClip([audio_clip, music_clip]))
|
214 |
-
|
215 |
output_filename = f"final_video_{int(time.time())}.mp4"
|
216 |
output_path = os.path.join(output_folder, output_filename)
|
217 |
-
|
218 |
final_clip.write_videofile(output_path, codec="libx264", audio_codec="aac", fps=24)
|
219 |
-
|
220 |
final_clip.close()
|
221 |
video_clip.close()
|
222 |
audio_clip.close()
|
223 |
if music_clip:
|
224 |
music_clip.close()
|
225 |
-
|
226 |
return output_path
|
227 |
except Exception as e:
|
228 |
print(f"Error combining audio and video: {e}")
|
@@ -230,6 +242,7 @@ def combine_audio_video(audio_file, video_clip, music_clip=None):
|
|
230 |
final_clip.close()
|
231 |
return None
|
232 |
|
|
|
233 |
def upload_to_google_drive(file_path, folder_id):
|
234 |
try:
|
235 |
creds = service_account.Credentials.from_service_account_info(
|
@@ -258,6 +271,17 @@ def upload_to_google_drive(file_path, folder_id):
|
|
258 |
print(f"Error uploading to Google Drive: {e}")
|
259 |
return None
|
260 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
def process_input(text, txt_file, mp3_file, selected_voice, rate, pitch, keywords):
|
262 |
try:
|
263 |
if text.strip():
|
@@ -266,26 +290,25 @@ def process_input(text, txt_file, mp3_file, selected_voice, rate, pitch, keyword
|
|
266 |
final_text = txt_file.decode("utf-8")
|
267 |
else:
|
268 |
raise ValueError("No text input provided")
|
269 |
-
|
270 |
audio_file = asyncio.run(text_to_speech(final_text, selected_voice, rate, pitch))
|
271 |
if not audio_file:
|
272 |
raise ValueError("Failed to generate audio")
|
273 |
-
|
274 |
video_clip = concatenate_google_images(keywords, clip_duration=5, num_images_per_keyword=1)
|
275 |
if not video_clip:
|
276 |
raise ValueError("Failed to generate video")
|
277 |
-
|
278 |
music_clip = None
|
279 |
if mp3_file is not None:
|
280 |
music_clip = adjust_background_music(video_clip.duration, mp3_file.name)
|
281 |
-
|
282 |
final_video_path = combine_audio_video(audio_file, video_clip, music_clip)
|
283 |
if not final_video_path:
|
284 |
raise ValueError("Failed to combine audio and video")
|
285 |
-
|
286 |
download_link = upload_to_google_drive(final_video_path, folder_id=FOLDER_ID)
|
287 |
if download_link:
|
288 |
-
print(f"Video uploaded to Google Drive. Download link: {download_link}")
|
289 |
return f"[Download video]({download_link})"
|
290 |
else:
|
291 |
raise ValueError("Error uploading video to Google Drive")
|
@@ -295,6 +318,7 @@ def process_input(text, txt_file, mp3_file, selected_voice, rate, pitch, keyword
|
|
295 |
finally:
|
296 |
cleanup_temp_files()
|
297 |
|
|
|
298 |
with gr.Blocks() as demo:
|
299 |
gr.Markdown("# Text-to-Video Generator")
|
300 |
with gr.Row():
|
@@ -304,7 +328,7 @@ with gr.Blocks() as demo:
|
|
304 |
mp3_file_input = gr.File(label="Upload background music (.mp3)", file_types=[".mp3"])
|
305 |
keyword_input = gr.Textbox(
|
306 |
label="Enter keywords separated by commas",
|
307 |
-
value="
|
308 |
)
|
309 |
voices = asyncio.run(get_voices())
|
310 |
voice_dropdown = gr.Dropdown(choices=list(voices.keys()), label="Select Voice")
|
|
|
1 |
+
import requests
|
2 |
import gradio as gr
|
3 |
from tts_module import get_voices, text_to_speech
|
4 |
from moviepy.editor import (
|
|
|
10 |
import os
|
11 |
import json
|
12 |
import time
|
|
|
13 |
import random
|
14 |
from googleapiclient.discovery import build
|
15 |
from google.oauth2 import service_account
|
|
|
20 |
|
21 |
MIN_WIDTH = 1920
|
22 |
MIN_HEIGHT = 1080
|
23 |
+
TARGET_ASPECT_RATIO = 16 / 9
|
24 |
|
25 |
output_folder = "outputs"
|
26 |
temp_dir = "temp_files"
|
|
|
29 |
|
30 |
FOLDER_ID = "12S6adpanAXjf71pKKGRRPqpzbJa5XEh3"
|
31 |
|
32 |
+
# Función para cargar proxies desde un archivo
|
33 |
def load_proxies(proxy_file="proxys.txt"):
|
34 |
try:
|
35 |
with open(proxy_file, 'r') as f:
|
36 |
proxies = [line.strip() for line in f if line.strip()]
|
37 |
print(f"Loaded {len(proxies)} proxies from file")
|
38 |
+
return [{"http": f"http://{proxy}", "https": f"http://{proxy}"} for proxy in proxies]
|
39 |
except Exception as e:
|
40 |
print(f"Error loading proxies: {e}")
|
41 |
return []
|
42 |
+
|
43 |
+
# Función para buscar imágenes en Google Custom Search API
|
44 |
def search_google_images(query, num_images=1):
|
45 |
try:
|
46 |
api_key = os.getenv('GOOGLE_API_KEY')
|
47 |
cse_id = os.getenv('GOOGLE_CSE_ID')
|
48 |
proxies = load_proxies()
|
49 |
+
|
50 |
print(f"Buscando imágenes para: {query}")
|
51 |
+
|
52 |
+
# Intenta con proxies si están disponibles
|
53 |
+
if proxies:
|
54 |
+
for proxy in proxies:
|
55 |
+
try:
|
56 |
+
print(f"Trying with proxy: {proxy['http']}")
|
57 |
+
result = requests.get(
|
58 |
+
"https://www.googleapis.com/customsearch/v1",
|
59 |
+
params={
|
60 |
+
"q": query,
|
61 |
+
"cx": cse_id,
|
62 |
+
"searchType": "image",
|
63 |
+
"num": num_images * 3,
|
64 |
+
"safe": "off",
|
65 |
+
"imgSize": "LARGE",
|
66 |
+
"rights": "cc_publicdomain|cc_attribute|cc_sharealike",
|
67 |
+
"key": api_key
|
68 |
+
},
|
69 |
+
proxies=proxy,
|
70 |
+
timeout=10
|
71 |
+
).json()
|
72 |
+
break # Sale del bucle si la solicitud es exitosa
|
73 |
+
except Exception as e:
|
74 |
+
print(f"Error using proxy {proxy['http']}: {e}")
|
75 |
+
continue
|
76 |
else:
|
77 |
+
print("No proxies available, trying without proxy")
|
78 |
+
result = requests.get(
|
79 |
+
"https://www.googleapis.com/customsearch/v1",
|
80 |
+
params={
|
81 |
+
"q": query,
|
82 |
+
"cx": cse_id,
|
83 |
+
"searchType": "image",
|
84 |
+
"num": num_images * 3,
|
85 |
+
"safe": "off",
|
86 |
+
"imgSize": "LARGE",
|
87 |
+
"rights": "cc_publicdomain|cc_attribute|cc_sharealike",
|
88 |
+
"key": api_key
|
89 |
+
},
|
90 |
+
timeout=10
|
91 |
+
).json()
|
92 |
+
|
93 |
if 'items' in result:
|
94 |
image_urls = []
|
95 |
for item in result.get('items', []):
|
|
|
100 |
image_urls.append(item['link'])
|
101 |
if len(image_urls) >= num_images:
|
102 |
break
|
103 |
+
|
104 |
print(f"Encontradas {len(image_urls)} imágenes de tamaño adecuado")
|
105 |
return image_urls
|
106 |
+
|
107 |
print("No se encontraron imágenes después de probar todos los proxies")
|
108 |
return []
|
109 |
+
|
110 |
except Exception as e:
|
111 |
print(f"Error general en la búsqueda de imágenes: {str(e)}")
|
112 |
return []
|
113 |
|
114 |
+
# Procesa una imagen para ajustar su tamaño
|
115 |
def process_image(image):
|
116 |
try:
|
117 |
width, height = image.size
|
118 |
current_ratio = width / height
|
119 |
+
|
120 |
if current_ratio > TARGET_ASPECT_RATIO:
|
121 |
new_width = max(MIN_WIDTH, width)
|
122 |
new_height = int(new_width / TARGET_ASPECT_RATIO)
|
123 |
else:
|
124 |
new_height = max(MIN_HEIGHT, height)
|
125 |
new_width = int(new_height * TARGET_ASPECT_RATIO)
|
126 |
+
|
127 |
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
128 |
background = Image.new('RGB', (max(new_width, MIN_WIDTH), max(new_height, MIN_HEIGHT)), 'black')
|
129 |
+
|
130 |
+
offset = ((background.width - image.width) // 2, (background.height - image.height) // 2)
|
|
|
131 |
background.paste(image, offset)
|
132 |
+
|
133 |
return background
|
134 |
except Exception as e:
|
135 |
print(f"Error processing image: {e}")
|
136 |
return None
|
137 |
|
138 |
+
# Descarga una imagen desde una URL
|
139 |
def download_image(url):
|
140 |
proxies = load_proxies()
|
141 |
if not proxies:
|
142 |
proxies = [None]
|
143 |
+
|
144 |
for proxy in proxies:
|
145 |
try:
|
146 |
response = requests.get(url, proxies=proxy, timeout=10)
|
147 |
image = Image.open(BytesIO(response.content))
|
148 |
+
|
149 |
if image.mode in ('RGBA', 'LA') or (image.mode == 'P' and 'transparency' in image.info):
|
150 |
background = Image.new('RGB', image.size, (0, 0, 0))
|
151 |
background.paste(image, mask=image.split()[-1])
|
152 |
image = background
|
153 |
+
|
154 |
processed_image = process_image(image)
|
155 |
if processed_image:
|
156 |
return processed_image
|
|
|
157 |
except Exception as e:
|
158 |
print(f"Error downloading image with proxy {proxy}: {e}")
|
159 |
continue
|
160 |
return None
|
161 |
|
162 |
+
# Crea un clip animado a partir de una imagen
|
163 |
def create_animated_clip(image, duration=5, zoom_factor=1.1):
|
164 |
img_array = np.array(image)
|
165 |
img_clip = ImageClip(img_array).set_duration(duration)
|
166 |
+
|
167 |
if img_clip.size[0] < MIN_WIDTH or img_clip.size[1] < MIN_HEIGHT:
|
168 |
img_clip = img_clip.resize(width=MIN_WIDTH, height=MIN_HEIGHT)
|
169 |
+
|
170 |
return img_clip.resize(lambda t: 1 + (zoom_factor - 1) * t / duration)
|
171 |
|
172 |
+
# Concatena clips de video basados en palabras clave
|
173 |
def concatenate_google_images(keywords, clip_duration=5, num_images_per_keyword=1):
|
174 |
keyword_list = [keyword.strip() for keyword in keywords.split(",") if keyword.strip()]
|
175 |
if not keyword_list:
|
176 |
keyword_list = ["nature"]
|
177 |
+
|
178 |
video_clips = []
|
179 |
for keyword in keyword_list:
|
180 |
try:
|
|
|
189 |
except Exception as e:
|
190 |
print(f"Error processing keyword '{keyword}': {e}")
|
191 |
continue
|
192 |
+
|
193 |
if not video_clips:
|
194 |
return ColorClip(size=(MIN_WIDTH, MIN_HEIGHT), color=[0, 0, 0], duration=5)
|
195 |
+
|
196 |
random.shuffle(video_clips)
|
197 |
return concatenate_videoclips(video_clips, method="compose")
|
198 |
|
199 |
+
# Ajusta la música de fondo para que coincida con la duración del video
|
200 |
def adjust_background_music(video_duration, music_file):
|
201 |
try:
|
202 |
music = AudioFileClip(music_file)
|
|
|
210 |
print(f"Error adjusting music: {e}")
|
211 |
return None
|
212 |
|
213 |
+
# Combina audio y video en un solo archivo
|
214 |
def combine_audio_video(audio_file, video_clip, music_clip=None):
|
215 |
try:
|
216 |
audio_clip = AudioFileClip(audio_file)
|
217 |
total_duration = audio_clip.duration + 2
|
218 |
+
|
219 |
video_clip = video_clip.loop(duration=total_duration)
|
220 |
video_clip = video_clip.set_duration(total_duration).fadeout(2)
|
221 |
+
|
222 |
final_clip = video_clip.set_audio(audio_clip)
|
223 |
if music_clip:
|
224 |
music_clip = music_clip.set_duration(total_duration).audio_fadeout(2)
|
225 |
final_clip = final_clip.set_audio(CompositeAudioClip([audio_clip, music_clip]))
|
226 |
+
|
227 |
output_filename = f"final_video_{int(time.time())}.mp4"
|
228 |
output_path = os.path.join(output_folder, output_filename)
|
229 |
+
|
230 |
final_clip.write_videofile(output_path, codec="libx264", audio_codec="aac", fps=24)
|
231 |
+
|
232 |
final_clip.close()
|
233 |
video_clip.close()
|
234 |
audio_clip.close()
|
235 |
if music_clip:
|
236 |
music_clip.close()
|
237 |
+
|
238 |
return output_path
|
239 |
except Exception as e:
|
240 |
print(f"Error combining audio and video: {e}")
|
|
|
242 |
final_clip.close()
|
243 |
return None
|
244 |
|
245 |
+
# Sube un archivo al Google Drive
|
246 |
def upload_to_google_drive(file_path, folder_id):
|
247 |
try:
|
248 |
creds = service_account.Credentials.from_service_account_info(
|
|
|
271 |
print(f"Error uploading to Google Drive: {e}")
|
272 |
return None
|
273 |
|
274 |
+
# Limpia archivos temporales
|
275 |
+
def cleanup_temp_files():
|
276 |
+
try:
|
277 |
+
if os.path.exists(temp_dir) and os.path.isdir(temp_dir):
|
278 |
+
shutil.rmtree(temp_dir)
|
279 |
+
os.makedirs(temp_dir, exist_ok=True)
|
280 |
+
print("Temporal files cleaned up successfully.")
|
281 |
+
except Exception as e:
|
282 |
+
print(f"Error cleaning up temporary files: {e}")
|
283 |
+
|
284 |
+
# Procesa la entrada del usuario y genera el video
|
285 |
def process_input(text, txt_file, mp3_file, selected_voice, rate, pitch, keywords):
|
286 |
try:
|
287 |
if text.strip():
|
|
|
290 |
final_text = txt_file.decode("utf-8")
|
291 |
else:
|
292 |
raise ValueError("No text input provided")
|
293 |
+
|
294 |
audio_file = asyncio.run(text_to_speech(final_text, selected_voice, rate, pitch))
|
295 |
if not audio_file:
|
296 |
raise ValueError("Failed to generate audio")
|
297 |
+
|
298 |
video_clip = concatenate_google_images(keywords, clip_duration=5, num_images_per_keyword=1)
|
299 |
if not video_clip:
|
300 |
raise ValueError("Failed to generate video")
|
301 |
+
|
302 |
music_clip = None
|
303 |
if mp3_file is not None:
|
304 |
music_clip = adjust_background_music(video_clip.duration, mp3_file.name)
|
305 |
+
|
306 |
final_video_path = combine_audio_video(audio_file, video_clip, music_clip)
|
307 |
if not final_video_path:
|
308 |
raise ValueError("Failed to combine audio and video")
|
309 |
+
|
310 |
download_link = upload_to_google_drive(final_video_path, folder_id=FOLDER_ID)
|
311 |
if download_link:
|
|
|
312 |
return f"[Download video]({download_link})"
|
313 |
else:
|
314 |
raise ValueError("Error uploading video to Google Drive")
|
|
|
318 |
finally:
|
319 |
cleanup_temp_files()
|
320 |
|
321 |
+
# Interfaz Gradio
|
322 |
with gr.Blocks() as demo:
|
323 |
gr.Markdown("# Text-to-Video Generator")
|
324 |
with gr.Row():
|
|
|
328 |
mp3_file_input = gr.File(label="Upload background music (.mp3)", file_types=[".mp3"])
|
329 |
keyword_input = gr.Textbox(
|
330 |
label="Enter keywords separated by commas",
|
331 |
+
value="nature, landscape, city, people"
|
332 |
)
|
333 |
voices = asyncio.run(get_voices())
|
334 |
voice_dropdown = gr.Dropdown(choices=list(voices.keys()), label="Select Voice")
|