Spaces:
Sleeping
Sleeping
File size: 5,096 Bytes
8fc9e84 a226bc4 26783c4 8fc9e84 0a27e5d 0f03e2f 0a27e5d 0f03e2f 0a27e5d 0f03e2f d7c8d35 0f03e2f d7c8d35 0f03e2f d7c8d35 0f03e2f 0a27e5d 8fc9e84 0f03e2f 8fc9e84 5a69f4d 21931b3 8fc9e84 5a69f4d 0a358e5 5a13c15 5a69f4d 8fc9e84 5a69f4d 8fc9e84 5a69f4d 21931b3 8fc9e84 5a69f4d 8fc9e84 5a69f4d 8fc9e84 0a358e5 5a13c15 8fc9e84 9588578 8fc9e84 5a69f4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import gradio as gr
from markitdown import MarkItDown
import google.generativeai as genai
import tempfile
import os
from pathlib import Path
# Initialize MarkItDown
md = MarkItDown()
# Configure Gemini AI
genai.configure(api_key=os.getenv('GEMINI_KEY'))
model = genai.GenerativeModel('gemini-2.0-flash-exp')
def process_with_markitdown(input_path):
"""Process file or URL with MarkItDown and return text content"""
try:
result = md.convert(input_path)
return result.text_content
except Exception as e:
return f"Error processing input: {str(e)}"
import tempfile
import os
import io
import tempfile
import os
import io
from gardio import upload_file
def save_uploaded_file(file_data):
"""Saves a file uploaded with gardio to a temporary location.
Args:
file_data: The file data object returned by gardio.get_file().
Returns:
The path to the saved file, or an error message as a string.
"""
if file_data is None:
return "No file uploaded."
try:
# Extract the filename; crucial to avoid errors
filename = file_data.filename if hasattr(file_data, 'filename') else "unknown_file"
temp_dir = tempfile.gettempdir()
temp_filename = tempfile.mkstemp(dir=temp_dir, suffix=os.path.splitext(filename)[1])[1]
with open(temp_filename, 'wb') as f:
try:
if hasattr(file_data, 'read'):
for chunk in file_data.chunks():
f.write(chunk)
elif hasattr(file_data, 'getvalue'):
f.write(file_data.getvalue())
else:
return "Error: Unsupported file-like object."
except Exception as e:
return f"Error writing to file: {str(e)}"
return temp_filename
except Exception as e:
return f"An error occurred during file saving: {str(e)}"
async def summarize_text(text):
"""Summarize the input text using Gemini AI"""
try:
prompt = f"""Please provide a concise summary of the following text. Focus on the main points and key takeaways:
{text}
Summary:"""
response = await model.generate_content_async(prompt)
return response.text
except Exception as e:
return f"Error generating summary: {str(e)}"
async def process_input(input_text, uploaded_file=None):
"""Main function to process either URL or uploaded file"""
try:
if uploaded_file is not None:
# Handle file upload
temp_path = save_uploaded_file(uploaded_file)
if temp_path.startswith('Error'):
return temp_path
text = process_with_markitdown(temp_path)
# Clean up temporary file
try:
os.remove(temp_path)
except:
pass
elif input_text.startswith(('http://', 'https://')):
# Handle URL
text = process_with_markitdown(input_text)
else:
# Handle direct text input
text = input_text
if text.startswith('Error'):
return text
# Generate summary using Gemini AI
summary = await summarize_text(text)
return summary
except Exception as e:
return f"Error processing input: {str(e)}"
def clear_inputs():
return ["", None, ""]
# Create Gradio interface with drag-and-drop
with gr.Blocks(theme=gr.themes.Soft()) as iface:
gr.Markdown(
"""
# Summarizeit
> Summarize any document!
Enter a URL, paste text, or drag & drop a file to get a summary.
"""
)
with gr.Row():
input_text = gr.Textbox(
label="Enter URL or text",
placeholder="Enter a URL or paste text here...",
scale=2
)
with gr.Row():
file_upload = gr.File(
label="Drop files here or click to upload",
file_types=[
".pdf", ".docx", ".xlsx", ".csv", ".txt", ".md",
".html", ".htm", ".xml", ".json"
],
file_count="single",
scale=2
)
with gr.Row():
submit_btn = gr.Button("Summarize", variant="primary")
clear_btn = gr.Button("Clear")
output_text = gr.Textbox(
label="Summary",
lines=10,
show_copy_button=True
)
# Set up event handlers
submit_btn.click(
fn=process_input,
inputs=[input_text, file_upload],
outputs=output_text
)
clear_btn.click(
fn=clear_inputs,
outputs=[input_text, file_upload, output_text]
)
# Add examples
gr.Examples(
examples=[
["https://h3manth.com"],
["https://www.youtube.com/watch?v=bSHp7WVpPgc"],
["https://en.wikipedia.org/wiki/Three-body_problem"]
],
inputs=input_text
)
if __name__ == "__main__":
iface.launch() |