File size: 14,704 Bytes
e97665c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import os
import argparse
from typing import Iterator

import gradio as gr
from dotenv import load_dotenv
from distutils.util import strtobool

from llama2_wrapper import LLAMA2_WRAPPER

import logging

from prompts.utils import PromtsContainer


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_path", type=str, default="", help="model path")
    parser.add_argument(
        "--backend_type",
        type=str,
        default="",
        help="Backend options: llama.cpp, gptq, transformers",
    )
    parser.add_argument(
        "--load_in_8bit",
        type=bool,
        default=False,
        help="Whether to use bitsandbytes 8 bit.",
    )
    parser.add_argument(
        "--share",
        type=bool,
        default=False,
        help="Whether to share public for gradio.",
    )
    args = parser.parse_args()

    load_dotenv()

    DEFAULT_SYSTEM_PROMPT = os.getenv("DEFAULT_SYSTEM_PROMPT", "")
    MAX_MAX_NEW_TOKENS = int(os.getenv("MAX_MAX_NEW_TOKENS", 2048))
    DEFAULT_MAX_NEW_TOKENS = int(os.getenv("DEFAULT_MAX_NEW_TOKENS", 1024))
    MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", 4000))

    MODEL_PATH = os.getenv("MODEL_PATH")
    assert MODEL_PATH is not None, f"MODEL_PATH is required, got: {MODEL_PATH}"
    BACKEND_TYPE = os.getenv("BACKEND_TYPE")
    assert BACKEND_TYPE is not None, f"BACKEND_TYPE is required, got: {BACKEND_TYPE}"

    LOAD_IN_8BIT = bool(strtobool(os.getenv("LOAD_IN_8BIT", "True")))

    if args.model_path != "":
        MODEL_PATH = args.model_path
    if args.backend_type != "":
        BACKEND_TYPE = args.backend_type
    if args.load_in_8bit:
        LOAD_IN_8BIT = True

    llama2_wrapper = LLAMA2_WRAPPER(
        model_path=MODEL_PATH,
        backend_type=BACKEND_TYPE,
        max_tokens=MAX_INPUT_TOKEN_LENGTH,
        load_in_8bit=LOAD_IN_8BIT,
        # verbose=True,
    )

    DESCRIPTION = """
    # llama2-webui
    """
    DESCRIPTION2 = """
    - Supporting models: [Llama-2-7b](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGML)/[13b](https://huggingface.co/llamaste/Llama-2-13b-chat-hf)/[70b](https://huggingface.co/llamaste/Llama-2-70b-chat-hf), [Llama-2-GPTQ](https://huggingface.co/TheBloke/Llama-2-7b-Chat-GPTQ), [Llama-2-GGML](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGML), [CodeLlama](https://huggingface.co/TheBloke/CodeLlama-7B-Instruct-GPTQ) ...
    - Supporting model backends: [tranformers](https://github.com/huggingface/transformers), [bitsandbytes(8-bit inference)](https://github.com/TimDettmers/bitsandbytes), [AutoGPTQ(4-bit inference)](https://github.com/PanQiWei/AutoGPTQ), [llama.cpp](https://github.com/ggerganov/llama.cpp)
    """

    def clear_and_save_textbox(message: str) -> tuple[str, str]:
        return "", message

    def save_textbox_for_prompt(message: str) -> str:
        logging.info("start save_textbox_from_prompt")
        message = convert_summary_to_prompt(message)
        return message

    def display_input(
        message: str, history: list[tuple[str, str]]
    ) -> list[tuple[str, str]]:
        history.append((message, ""))
        return history

    def delete_prev_fn(
        history: list[tuple[str, str]]
    ) -> tuple[list[tuple[str, str]], str]:
        try:
            message, _ = history.pop()
        except IndexError:
            message = ""
        return history, message or ""

    def generate(
        message: str,
        history_with_input: list[tuple[str, str]],
        system_prompt: str,
        max_new_tokens: int,
        temperature: float,
        top_p: float,
        top_k: int,
    ) -> Iterator[list[tuple[str, str]]]:
        if max_new_tokens > MAX_MAX_NEW_TOKENS:
            raise ValueError
        try:
            history = history_with_input[:-1]
            generator = llama2_wrapper.run(
                message,
                history,
                system_prompt,
                max_new_tokens,
                temperature,
                top_p,
                top_k,
            )
            try:
                first_response = next(generator)
                yield history + [(message, first_response)]
            except StopIteration:
                yield history + [(message, "")]
            for response in generator:
                yield history + [(message, response)]
        except Exception as e:
            logging.exception(e)

    def check_input_token_length(
        message: str, chat_history: list[tuple[str, str]], system_prompt: str
    ) -> None:
        input_token_length = llama2_wrapper.get_input_token_length(
            message, chat_history, system_prompt
        )
        if input_token_length > MAX_INPUT_TOKEN_LENGTH:
            raise gr.Error(
                f"The accumulated input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH}). Clear your chat history and try again."
            )

    prompts_container = PromtsContainer()
    prompts = prompts_container.get_prompts_tab_dict()
    default_prompts_checkbox = False
    default_advanced_checkbox = False

    def convert_summary_to_prompt(summary):
        return prompts_container.get_prompt_by_summary(summary)

    def two_columns_list(tab_data, chatbot):
        result = []
        for i in range(int(len(tab_data) / 2) + 1):
            row = gr.Row()
            with row:
                for j in range(2):
                    index = 2 * i + j
                    if index >= len(tab_data):
                        break
                    item = tab_data[index]
                    with gr.Group():
                        gr.HTML(
                            f'<p style="color: black; font-weight: bold;">{item["act"]}</p>'
                        )
                        prompt_text = gr.Button(
                            label="",
                            value=f"{item['summary']}",
                            size="sm",
                            elem_classes="text-left-aligned",
                        )
                        prompt_text.click(
                            fn=save_textbox_for_prompt,
                            inputs=prompt_text,
                            outputs=saved_input,
                            api_name=False,
                            queue=True,
                        ).then(
                            fn=display_input,
                            inputs=[saved_input, chatbot],
                            outputs=chatbot,
                            api_name=False,
                            queue=True,
                        ).then(
                            fn=check_input_token_length,
                            inputs=[saved_input, chatbot, system_prompt],
                            api_name=False,
                            queue=False,
                        ).success(
                            fn=generate,
                            inputs=[
                                saved_input,
                                chatbot,
                                system_prompt,
                                max_new_tokens,
                                temperature,
                                top_p,
                                top_k,
                            ],
                            outputs=chatbot,
                            api_name=False,
                        )
                result.append(row)
        return result

    CSS = """
        .contain { display: flex; flex-direction: column;}
        #component-0 #component-1 #component-2 #component-4 #component-5 { height:71vh !important; }
        #component-0 #component-1 #component-24 > div:nth-child(2) { height:80vh !important; overflow-y:auto }
        .text-left-aligned {text-align: left !important; font-size: 16px;}
    """
    with gr.Blocks(css=CSS) as demo:
        with gr.Row(equal_height=True):
            with gr.Column(scale=2):
                gr.Markdown(DESCRIPTION)
                with gr.Group():
                    chatbot = gr.Chatbot(label="Chatbot")
                    with gr.Row():
                        textbox = gr.Textbox(
                            container=False,
                            show_label=False,
                            placeholder="Type a message...",
                            scale=10,
                        )
                        submit_button = gr.Button(
                            "Submit", variant="primary", scale=1, min_width=0
                        )
                with gr.Row():
                    retry_button = gr.Button("🔄  Retry", variant="secondary")
                    undo_button = gr.Button("↩️ Undo", variant="secondary")
                    clear_button = gr.Button("🗑️  Clear", variant="secondary")

                saved_input = gr.State()
                with gr.Row():
                    advanced_checkbox = gr.Checkbox(
                        label="Advanced",
                        value=default_prompts_checkbox,
                        container=False,
                        elem_classes="min_check",
                    )
                    prompts_checkbox = gr.Checkbox(
                        label="Prompts",
                        value=default_prompts_checkbox,
                        container=False,
                        elem_classes="min_check",
                    )
                with gr.Column(visible=default_advanced_checkbox) as advanced_column:
                    system_prompt = gr.Textbox(
                        label="System prompt", value=DEFAULT_SYSTEM_PROMPT, lines=6
                    )
                    max_new_tokens = gr.Slider(
                        label="Max new tokens",
                        minimum=1,
                        maximum=MAX_MAX_NEW_TOKENS,
                        step=1,
                        value=DEFAULT_MAX_NEW_TOKENS,
                    )
                    temperature = gr.Slider(
                        label="Temperature",
                        minimum=0.1,
                        maximum=4.0,
                        step=0.1,
                        value=1.0,
                    )
                    top_p = gr.Slider(
                        label="Top-p (nucleus sampling)",
                        minimum=0.05,
                        maximum=1.0,
                        step=0.05,
                        value=0.95,
                    )
                    top_k = gr.Slider(
                        label="Top-k",
                        minimum=1,
                        maximum=1000,
                        step=1,
                        value=50,
                    )
            with gr.Column(scale=1, visible=default_prompts_checkbox) as prompt_column:
                gr.HTML(
                    '<p style="color: green; font-weight: bold;font-size: 16px;">\N{four leaf clover} prompts</p>'
                )
                for k, v in prompts.items():
                    with gr.Tab(k, scroll_to_output=True):
                        lst = two_columns_list(v, chatbot)
            prompts_checkbox.change(
                lambda x: gr.update(visible=x),
                prompts_checkbox,
                prompt_column,
                queue=False,
            )
            advanced_checkbox.change(
                lambda x: gr.update(visible=x),
                advanced_checkbox,
                advanced_column,
                queue=False,
            )

        textbox.submit(
            fn=clear_and_save_textbox,
            inputs=textbox,
            outputs=[textbox, saved_input],
            api_name=False,
            queue=False,
        ).then(
            fn=display_input,
            inputs=[saved_input, chatbot],
            outputs=chatbot,
            api_name=False,
            queue=False,
        ).then(
            fn=check_input_token_length,
            inputs=[saved_input, chatbot, system_prompt],
            api_name=False,
            queue=False,
        ).success(
            fn=generate,
            inputs=[
                saved_input,
                chatbot,
                system_prompt,
                max_new_tokens,
                temperature,
                top_p,
                top_k,
            ],
            outputs=chatbot,
            api_name=False,
        )

        button_event_preprocess = (
            submit_button.click(
                fn=clear_and_save_textbox,
                inputs=textbox,
                outputs=[textbox, saved_input],
                api_name=False,
                queue=False,
            )
            .then(
                fn=display_input,
                inputs=[saved_input, chatbot],
                outputs=chatbot,
                api_name=False,
                queue=False,
            )
            .then(
                fn=check_input_token_length,
                inputs=[saved_input, chatbot, system_prompt],
                api_name=False,
                queue=False,
            )
            .success(
                fn=generate,
                inputs=[
                    saved_input,
                    chatbot,
                    system_prompt,
                    max_new_tokens,
                    temperature,
                    top_p,
                    top_k,
                ],
                outputs=chatbot,
                api_name=False,
            )
        )

        retry_button.click(
            fn=delete_prev_fn,
            inputs=chatbot,
            outputs=[chatbot, saved_input],
            api_name=False,
            queue=False,
        ).then(
            fn=display_input,
            inputs=[saved_input, chatbot],
            outputs=chatbot,
            api_name=False,
            queue=False,
        ).then(
            fn=generate,
            inputs=[
                saved_input,
                chatbot,
                system_prompt,
                max_new_tokens,
                temperature,
                top_p,
                top_k,
            ],
            outputs=chatbot,
            api_name=False,
        )

        undo_button.click(
            fn=delete_prev_fn,
            inputs=chatbot,
            outputs=[chatbot, saved_input],
            api_name=False,
            queue=False,
        ).then(
            fn=lambda x: x,
            inputs=[saved_input],
            outputs=textbox,
            api_name=False,
            queue=False,
        )

        clear_button.click(
            fn=lambda: ([], ""),
            outputs=[chatbot, saved_input],
            queue=False,
            api_name=False,
        )

    demo.queue(max_size=20).launch(share=args.share)


if __name__ == "__main__":
    main()