import argparse import gradio as gr from llama2_wrapper import LLAMA2_WRAPPER FIM_PREFIX = "
" FIM_MIDDLE = "" FIM_SUFFIX = " " FIM_INDICATOR = " " EOS_STRING = "" EOT_STRING = " " def main(): parser = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, default="./models/codellama-7b-instruct.ggmlv3.Q4_0.bin", help="model path", ) parser.add_argument( "--backend_type", type=str, default="llama.cpp", help="Backend options: llama.cpp, gptq, transformers", ) parser.add_argument( "--max_tokens", type=int, default=4000, help="Maximum context size.", ) parser.add_argument( "--load_in_8bit", type=bool, default=False, help="Whether to use bitsandbytes 8 bit.", ) parser.add_argument( "--share", type=bool, default=False, help="Whether to share public for gradio.", ) args = parser.parse_args() llama2_wrapper = LLAMA2_WRAPPER( model_path=args.model_path, backend_type=args.backend_type, max_tokens=args.max_tokens, load_in_8bit=args.load_in_8bit, ) def generate( prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, ): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) fim_mode = False generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, stream=True, ) if FIM_INDICATOR in prompt: fim_mode = True try: prefix, suffix = prompt.split(FIM_INDICATOR) except: raise ValueError(f"Only one {FIM_INDICATOR} allowed in prompt!") prompt = f"{FIM_PREFIX}{prefix}{FIM_SUFFIX}{suffix}{FIM_MIDDLE}" stream = llama2_wrapper.__call__(prompt, **generate_kwargs) if fim_mode: output = prefix else: output = prompt # for response in stream: # output += response # yield output # return output previous_token = "" for response in stream: if any([end_token in response for end_token in [EOS_STRING, EOT_STRING]]): if fim_mode: output += suffix yield output return output print("output", output) else: return output else: output += response previous_token = response yield output return output examples = [ 'def remove_non_ascii(s: str) -> str:\n """ \nprint(remove_non_ascii(\'afkdj$$(\'))', "X_train, y_train, X_test, y_test = train_test_split(X, y, test_size=0.1)\n\n# Train a logistic regression model, predict the labels on the test set and compute the accuracy score", "// Returns every other value in the array as a new array.\nfunction everyOther(arr) {", "Poor English: She no went to the market. Corrected English:", "def alternating(list1, list2):\n results = []\n for i in range(min(len(list1), len(list2))):\n results.append(list1[i])\n results.append(list2[i])\n if len(list1) > len(list2):\n \n else:\n results.extend(list2[i+1:])\n return results", ] def process_example(args): for x in generate(args): pass return x description = """ Code Llama Playground
""" with gr.Blocks() as demo: with gr.Column(): gr.Markdown(description) with gr.Row(): with gr.Column(): instruction = gr.Textbox( placeholder="Enter your code here", lines=5, label="Input", elem_id="q-input", ) submit = gr.Button("Generate", variant="primary") output = gr.Code(elem_id="q-output", lines=30, label="Output") with gr.Row(): with gr.Column(): with gr.Accordion("Advanced settings", open=False): with gr.Row(): column_1, column_2 = gr.Column(), gr.Column() with column_1: temperature = gr.Slider( label="Temperature", value=0.1, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ) max_new_tokens = gr.Slider( label="Max new tokens", value=256, minimum=0, maximum=8192, step=64, interactive=True, info="The maximum numbers of new tokens", ) with column_2: top_p = gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ) repetition_penalty = gr.Slider( label="Repetition penalty", value=1.05, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) gr.Examples( examples=examples, inputs=[instruction], cache_examples=False, fn=process_example, outputs=[output], ) submit.click( generate, inputs=[ instruction, temperature, max_new_tokens, top_p, repetition_penalty, ], outputs=[output], ) demo.queue(concurrency_count=16).launch(share=args.share) if __name__ == "__main__": main()This is a demo to complete code with Code Llama. For instruction purposes, please use llama2-webui app.py with CodeLlama-Instruct models.