Spaces:
Runtime error
Runtime error
File size: 7,365 Bytes
a90cc5e b920029 a90cc5e b920029 a90cc5e e9c5763 21085cc e9c5763 21085cc a90cc5e e9c5763 21085cc e9c5763 21085cc e9c5763 a90cc5e e9c5763 a90cc5e e9c5763 a90cc5e 929c20c a90cc5e 929c20c a90cc5e 929c20c a90cc5e 929c20c a90cc5e 929c20c a90cc5e 929c20c a90cc5e 929c20c a90cc5e e9c5763 a90cc5e e9c5763 a90cc5e e9c5763 a90cc5e b920029 a90cc5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import cv2
import numpy as np
import scipy as sp
import scipy.sparse.linalg
import gradio as gr
import os
def get_image(img, mask=False):
if mask:
if isinstance(img, str):
img = cv2.imread(img, cv2.IMREAD_GRAYSCALE)
elif img.ndim == 3:
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
return np.where(img > 127, 1, 0)
else:
if isinstance(img, str):
img = cv2.imread(img)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
elif img.ndim == 2:
img = np.stack((img,)*3, axis=-1)
return img.astype('double') / 255.0
def neighbours(i, j, max_i, max_j):
pairs = []
for n in [-1, 1]:
if 0 <= i+n <= max_i:
pairs.append((i+n, j))
if 0 <= j+n <= max_j:
pairs.append((i, j+n))
return pairs
def poisson_blend(img_s, mask, img_t):
img_s_h, img_s_w = img_s.shape
nnz = np.sum(mask > 0)
im2var = np.full(mask.shape, -1, dtype='int32')
im2var[mask > 0] = np.arange(nnz)
ys, xs = np.where(mask == 1)
# Precompute neighbor indices
y_n = np.clip(np.stack([ys-1, ys+1, ys, ys]), 0, img_s_h-1)
x_n = np.clip(np.stack([xs, xs, xs-1, xs+1]), 0, img_s_w-1)
# Compute differences
d = img_s[ys, xs][:, np.newaxis] - img_s[y_n.T, x_n.T].T
# Construct sparse matrix A and vector b
rows = np.arange(4*nnz)
cols = np.repeat(im2var[ys, xs], 4)
data = np.ones(4*nnz)
A = sp.sparse.csr_matrix((data, (rows, cols)), shape=(4*nnz, nnz))
mask_n = (im2var[y_n, x_n] != -1)
cols_n = im2var[y_n, x_n][mask_n]
rows_n = np.arange(4*nnz)[mask_n.ravel()]
data_n = -np.ones(cols_n.size)
A += sp.sparse.csr_matrix((data_n, (rows_n, cols_n)), shape=(4*nnz, nnz))
b = d.ravel()
b[~mask_n.ravel()] += img_t[y_n, x_n][~mask_n]
# Solve the system
v = sp.sparse.linalg.lsqr(A, b)[0]
# Update the target image
img_t_out = img_t.copy()
img_t_out[ys, xs] = v
return np.clip(img_t_out, 0, 1)
def mixed_blend(img_s, mask, img_t):
img_s_h, img_s_w = img_s.shape
nnz = np.sum(mask > 0)
im2var = np.full(mask.shape, -1, dtype='int32')
im2var[mask > 0] = np.arange(nnz)
ys, xs = np.where(mask == 1)
# Precompute neighbor indices
y_n = np.clip(np.stack([ys-1, ys+1, ys, ys]), 0, img_s_h-1)
x_n = np.clip(np.stack([xs, xs, xs-1, xs+1]), 0, img_s_w-1)
# Compute differences
ds = img_s[ys, xs][:, np.newaxis] - img_s[y_n, x_n]
dt = img_t[ys, xs][:, np.newaxis] - img_t[y_n, x_n]
# Choose larger gradient
d = np.where(np.abs(ds) > np.abs(dt), ds, dt)
# Construct sparse matrix A and vector b
rows = np.repeat(np.arange(4*nnz), 2)
cols = np.column_stack([np.repeat(im2var[ys, xs], 4), im2var[y_n, x_n].ravel()])
data = np.column_stack([np.ones(4*nnz), -np.ones(4*nnz)]).ravel()
mask_n = (im2var[y_n, x_n] != -1).ravel()
rows = rows[mask_n]
cols = cols[mask_n]
data = data[mask_n]
A = sp.sparse.csr_matrix((data, (rows, cols)), shape=(4*nnz, nnz))
b = d.ravel()
b[~mask_n] += img_t[y_n, x_n].ravel()[~mask_n]
# Solve the system
v = sp.sparse.linalg.lsqr(A, b)[0]
# Update the target image
img_t_out = img_t.copy()
img_t_out[ys, xs] = v
return np.clip(img_t_out, 0, 1)
def laplacian_blend(img1, img2, mask, depth=5, sigma=25):
def _2d_gaussian(sigma):
ksize = int(np.ceil(sigma) * 6 + 1)
gaussian_1d = cv2.getGaussianKernel(ksize, sigma)
return gaussian_1d @ gaussian_1d.T
def _low_pass_filter(img, sigma):
return cv2.filter2D(img, -1, _2d_gaussian(sigma))
def _high_pass_filter(img, sigma):
return img - _low_pass_filter(img, sigma)
def _gaus_pyramid(img, depth, sigma):
pyramid = [img]
for _ in range(depth - 1):
img = _low_pass_filter(cv2.pyrDown(img), sigma)
pyramid.append(img)
return pyramid
def _lap_pyramid(img, depth, sigma):
pyramid = []
for d in range(depth - 1):
next_img = cv2.pyrDown(img)
lap = img - cv2.pyrUp(next_img, dstsize=img.shape[:2])
pyramid.append(lap)
img = next_img
pyramid.append(img)
return pyramid
def _blend(img1, img2, mask):
return img1 * mask + img2 * (1.0 - mask)
# Ensure mask is 3D
if mask.ndim == 2:
mask = np.repeat(mask[:, :, np.newaxis], 3, axis=2)
# Create Gaussian pyramid for mask
mask_gaus_pyramid = _gaus_pyramid(mask, depth, sigma)
# Create Laplacian pyramids for images
img1_lap_pyramid = _lap_pyramid(img1, depth, sigma)
img2_lap_pyramid = _lap_pyramid(img2, depth, sigma)
# Blend pyramids
blended_pyramid = [_blend(img1_lap, img2_lap, mask_gaus)
for img1_lap, img2_lap, mask_gaus
in zip(img1_lap_pyramid, img2_lap_pyramid, mask_gaus_pyramid)]
# Reconstruct image
blended_img = blended_pyramid[-1]
for lap in reversed(blended_pyramid[:-1]):
blended_img = cv2.pyrUp(blended_img, dstsize=lap.shape[:2])
blended_img += lap
return np.clip(blended_img, 0, 1)
def load_example_images(bg_path, obj_path, mask_path):
bg_img = cv2.imread(bg_path)
bg_img = cv2.cvtColor(bg_img, cv2.COLOR_BGR2RGB)
obj_img = cv2.imread(obj_path)
obj_img = cv2.cvtColor(obj_img, cv2.COLOR_BGR2RGB)
mask_img = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
mask_img = np.where(mask_img > 127, 255, 0).astype(np.uint8)
return bg_img, obj_img, mask_img
# Modify the blend_images function to accept numpy arrays directly
def blend_images(bg_img, obj_img, mask_img, blend_method):
bg_img = get_image(bg_img)
obj_img = get_image(obj_img)
mask_img = get_image(mask_img, mask=True)
# Ensure mask is 2D
if mask_img.ndim == 3:
mask_img = mask_img[:,:,0] # Take the first channel if it's 3D
# Resize mask to match object image size
mask_img = cv2.resize(mask_img, (obj_img.shape[1], obj_img.shape[0]))
if blend_method == "Poisson":
blend_func = poisson_blend
elif blend_method == "Mixed Gradient":
blend_func = mixed_blend
else: # Laplacian
return laplacian_blend(obj_img, bg_img, np.stack((mask_img,)*3, axis=-1), 5, 25)
blend_img = np.zeros(bg_img.shape)
for b in range(3):
blend_img[:,:,b] = blend_func(obj_img[:,:,b], mask_img, bg_img[:,:,b].copy())
return (blend_img * 255).astype(np.uint8)
examples = [
["img1.jpg", "img2.jpg", "mask1.jpg", "Poisson"],
["img3.jpg", "img4.jpg", "mask2.jpg", "Mixed Gradient"],
["img6.jpg", "img9.jpg", "mask3.jpg", "Laplacian"]
]
iface = gr.Interface(
fn=blend_images,
inputs=[
gr.Image(label="Background Image", type="numpy"),
gr.Image(label="Object Image", type="numpy"),
gr.Image(label="Mask Image", type="numpy"),
gr.Radio(["Poisson", "Mixed Gradient", "Laplacian"], label="Blending Method")
],
outputs=gr.Image(label="Blended Image"),
title="Image Blending with Examples",
description="Choose from example images or upload your own to blend using different methods.",
examples=examples,
cache_examples=True
)
iface.launch() |