File size: 7,365 Bytes
a90cc5e
 
 
 
 
 
 
 
 
b920029
 
 
 
a90cc5e
b920029
 
 
 
 
 
 
a90cc5e
 
 
 
 
 
 
 
 
 
 
 
e9c5763
 
 
 
 
 
 
 
 
 
 
21085cc
e9c5763
 
21085cc
 
 
a90cc5e
e9c5763
21085cc
 
 
 
 
 
 
 
e9c5763
21085cc
e9c5763
 
a90cc5e
 
e9c5763
a90cc5e
e9c5763
a90cc5e
 
 
 
 
929c20c
 
 
a90cc5e
929c20c
a90cc5e
929c20c
 
 
a90cc5e
929c20c
 
 
a90cc5e
929c20c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a90cc5e
 
929c20c
a90cc5e
929c20c
a90cc5e
 
 
 
e9c5763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a90cc5e
 
e9c5763
 
 
a90cc5e
e9c5763
 
 
 
 
 
 
 
 
 
 
 
a90cc5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b920029
 
 
 
a90cc5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import cv2
import numpy as np
import scipy as sp
import scipy.sparse.linalg
import gradio as gr
import os

def get_image(img, mask=False):
    if mask:
        if isinstance(img, str):
            img = cv2.imread(img, cv2.IMREAD_GRAYSCALE)
        elif img.ndim == 3:
            img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
        return np.where(img > 127, 1, 0)
    else:
        if isinstance(img, str):
            img = cv2.imread(img)
            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        elif img.ndim == 2:
            img = np.stack((img,)*3, axis=-1)
        return img.astype('double') / 255.0

def neighbours(i, j, max_i, max_j):
    pairs = []
    for n in [-1, 1]:
        if 0 <= i+n <= max_i:
            pairs.append((i+n, j))
        if 0 <= j+n <= max_j:
            pairs.append((i, j+n))
    return pairs

def poisson_blend(img_s, mask, img_t):
    img_s_h, img_s_w = img_s.shape
    nnz = np.sum(mask > 0)
    im2var = np.full(mask.shape, -1, dtype='int32')
    im2var[mask > 0] = np.arange(nnz)
    
    ys, xs = np.where(mask == 1)
    
    # Precompute neighbor indices
    y_n = np.clip(np.stack([ys-1, ys+1, ys, ys]), 0, img_s_h-1)
    x_n = np.clip(np.stack([xs, xs, xs-1, xs+1]), 0, img_s_w-1)
    
    # Compute differences
    d = img_s[ys, xs][:, np.newaxis] - img_s[y_n.T, x_n.T].T
    
    # Construct sparse matrix A and vector b
    rows = np.arange(4*nnz)
    cols = np.repeat(im2var[ys, xs], 4)
    data = np.ones(4*nnz)
    
    A = sp.sparse.csr_matrix((data, (rows, cols)), shape=(4*nnz, nnz))
    
    mask_n = (im2var[y_n, x_n] != -1)
    cols_n = im2var[y_n, x_n][mask_n]
    rows_n = np.arange(4*nnz)[mask_n.ravel()]
    data_n = -np.ones(cols_n.size)
    
    A += sp.sparse.csr_matrix((data_n, (rows_n, cols_n)), shape=(4*nnz, nnz))
    
    b = d.ravel()
    b[~mask_n.ravel()] += img_t[y_n, x_n][~mask_n]
    
    # Solve the system
    v = sp.sparse.linalg.lsqr(A, b)[0]
    
    # Update the target image
    img_t_out = img_t.copy()
    img_t_out[ys, xs] = v
    
    return np.clip(img_t_out, 0, 1)

def mixed_blend(img_s, mask, img_t):
    img_s_h, img_s_w = img_s.shape
    nnz = np.sum(mask > 0)
    im2var = np.full(mask.shape, -1, dtype='int32')
    im2var[mask > 0] = np.arange(nnz)
    
    ys, xs = np.where(mask == 1)
    
    # Precompute neighbor indices
    y_n = np.clip(np.stack([ys-1, ys+1, ys, ys]), 0, img_s_h-1)
    x_n = np.clip(np.stack([xs, xs, xs-1, xs+1]), 0, img_s_w-1)
    
    # Compute differences
    ds = img_s[ys, xs][:, np.newaxis] - img_s[y_n, x_n]
    dt = img_t[ys, xs][:, np.newaxis] - img_t[y_n, x_n]
    
    # Choose larger gradient
    d = np.where(np.abs(ds) > np.abs(dt), ds, dt)
    
    # Construct sparse matrix A and vector b
    rows = np.repeat(np.arange(4*nnz), 2)
    cols = np.column_stack([np.repeat(im2var[ys, xs], 4), im2var[y_n, x_n].ravel()])
    data = np.column_stack([np.ones(4*nnz), -np.ones(4*nnz)]).ravel()
    
    mask_n = (im2var[y_n, x_n] != -1).ravel()
    rows = rows[mask_n]
    cols = cols[mask_n]
    data = data[mask_n]
    
    A = sp.sparse.csr_matrix((data, (rows, cols)), shape=(4*nnz, nnz))
    b = d.ravel()
    b[~mask_n] += img_t[y_n, x_n].ravel()[~mask_n]
    
    # Solve the system
    v = sp.sparse.linalg.lsqr(A, b)[0]
    
    # Update the target image
    img_t_out = img_t.copy()
    img_t_out[ys, xs] = v
    
    return np.clip(img_t_out, 0, 1)

def laplacian_blend(img1, img2, mask, depth=5, sigma=25):
    def _2d_gaussian(sigma):
        ksize = int(np.ceil(sigma) * 6 + 1)
        gaussian_1d = cv2.getGaussianKernel(ksize, sigma)
        return gaussian_1d @ gaussian_1d.T

    def _low_pass_filter(img, sigma):
        return cv2.filter2D(img, -1, _2d_gaussian(sigma))

    def _high_pass_filter(img, sigma):
        return img - _low_pass_filter(img, sigma)

    def _gaus_pyramid(img, depth, sigma):
        pyramid = [img]
        for _ in range(depth - 1):
            img = _low_pass_filter(cv2.pyrDown(img), sigma)
            pyramid.append(img)
        return pyramid

    def _lap_pyramid(img, depth, sigma):
        pyramid = []
        for d in range(depth - 1):
            next_img = cv2.pyrDown(img)
            lap = img - cv2.pyrUp(next_img, dstsize=img.shape[:2])
            pyramid.append(lap)
            img = next_img
        pyramid.append(img)
        return pyramid

    def _blend(img1, img2, mask):
        return img1 * mask + img2 * (1.0 - mask)

    # Ensure mask is 3D
    if mask.ndim == 2:
        mask = np.repeat(mask[:, :, np.newaxis], 3, axis=2)

    # Create Gaussian pyramid for mask
    mask_gaus_pyramid = _gaus_pyramid(mask, depth, sigma)

    # Create Laplacian pyramids for images
    img1_lap_pyramid = _lap_pyramid(img1, depth, sigma)
    img2_lap_pyramid = _lap_pyramid(img2, depth, sigma)

    # Blend pyramids
    blended_pyramid = [_blend(img1_lap, img2_lap, mask_gaus) 
                       for img1_lap, img2_lap, mask_gaus 
                       in zip(img1_lap_pyramid, img2_lap_pyramid, mask_gaus_pyramid)]

    # Reconstruct image
    blended_img = blended_pyramid[-1]
    for lap in reversed(blended_pyramid[:-1]):
        blended_img = cv2.pyrUp(blended_img, dstsize=lap.shape[:2])
        blended_img += lap

    return np.clip(blended_img, 0, 1)

def load_example_images(bg_path, obj_path, mask_path):
    bg_img = cv2.imread(bg_path)
    bg_img = cv2.cvtColor(bg_img, cv2.COLOR_BGR2RGB)
    
    obj_img = cv2.imread(obj_path)
    obj_img = cv2.cvtColor(obj_img, cv2.COLOR_BGR2RGB)
    
    mask_img = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
    mask_img = np.where(mask_img > 127, 255, 0).astype(np.uint8)
    
    return bg_img, obj_img, mask_img

# Modify the blend_images function to accept numpy arrays directly
def blend_images(bg_img, obj_img, mask_img, blend_method):
    bg_img = get_image(bg_img)
    obj_img = get_image(obj_img)
    mask_img = get_image(mask_img, mask=True)

    # Ensure mask is 2D
    if mask_img.ndim == 3:
        mask_img = mask_img[:,:,0]  # Take the first channel if it's 3D

    # Resize mask to match object image size
    mask_img = cv2.resize(mask_img, (obj_img.shape[1], obj_img.shape[0]))

    if blend_method == "Poisson":
        blend_func = poisson_blend
    elif blend_method == "Mixed Gradient":
        blend_func = mixed_blend
    else:  # Laplacian
        return laplacian_blend(obj_img, bg_img, np.stack((mask_img,)*3, axis=-1), 5, 25)

    blend_img = np.zeros(bg_img.shape)
    for b in range(3):
        blend_img[:,:,b] = blend_func(obj_img[:,:,b], mask_img, bg_img[:,:,b].copy())
    
    return (blend_img * 255).astype(np.uint8)

examples = [
    ["img1.jpg", "img2.jpg", "mask1.jpg", "Poisson"],
    ["img3.jpg", "img4.jpg", "mask2.jpg", "Mixed Gradient"],
    ["img6.jpg", "img9.jpg", "mask3.jpg", "Laplacian"]
]

iface = gr.Interface(
    fn=blend_images,
    inputs=[
        gr.Image(label="Background Image", type="numpy"),
        gr.Image(label="Object Image", type="numpy"),
        gr.Image(label="Mask Image", type="numpy"),
        gr.Radio(["Poisson", "Mixed Gradient", "Laplacian"], label="Blending Method")
    ],
    outputs=gr.Image(label="Blended Image"),
    title="Image Blending with Examples",
    description="Choose from example images or upload your own to blend using different methods.",
    examples=examples,
    cache_examples=True
)

iface.launch()