Spaces:
Runtime error
Runtime error
gokaygokay
commited on
Commit
•
1486d83
1
Parent(s):
ee16454
Update app.py
Browse files
app.py
CHANGED
@@ -4,9 +4,6 @@ import scipy.sparse as sp
|
|
4 |
import scipy.sparse.linalg as splin
|
5 |
from numba import jit
|
6 |
import gradio as gr
|
7 |
-
from PIL import Image
|
8 |
-
from typing import TypedDict
|
9 |
-
|
10 |
|
11 |
@jit(nopython=True)
|
12 |
def build_poisson_sparse_matrix(ys, xs, im2var, img_s, img_t, mask):
|
@@ -187,88 +184,24 @@ def laplacian_blend(img1: np.ndarray, img2: np.ndarray, mask: np.ndarray, depth:
|
|
187 |
|
188 |
return np.clip(imgs[-1], 0, 1)
|
189 |
|
190 |
-
def get_image(
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
if isinstance(
|
195 |
-
img =
|
196 |
-
if img is None:
|
197 |
-
img = img_input.get('background')
|
198 |
-
elif isinstance(img_input, np.ndarray):
|
199 |
-
img = img_input
|
200 |
-
elif isinstance(img_input, str):
|
201 |
-
img = cv2.imread(img_input)
|
202 |
-
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
203 |
else:
|
204 |
-
|
205 |
-
|
206 |
-
if img is None:
|
207 |
-
raise ValueError("Failed to load image")
|
208 |
-
|
209 |
-
if mask:
|
210 |
-
if len(img.shape) == 3:
|
211 |
-
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
212 |
-
return np.where(img > 127, 1, 0).astype(np.uint8) # Threshold at 127 for the mask
|
213 |
-
|
214 |
-
if scale and img.dtype != np.float64:
|
215 |
-
return img.astype('float64') / 255.0
|
216 |
-
|
217 |
-
return img
|
218 |
-
|
219 |
-
class ImageData(TypedDict):
|
220 |
-
background: np.ndarray
|
221 |
-
layers: list[np.ndarray]
|
222 |
-
|
223 |
-
def combine_masks(im_1: np.ndarray, im_2: np.ndarray):
|
224 |
-
if im_1.shape != im_2.shape:
|
225 |
-
raise ValueError("Images must have the same dimensions")
|
226 |
-
foreground_mask = im_2[:, :, 3] > 0
|
227 |
-
im_1[foreground_mask] = im_2[foreground_mask]
|
228 |
-
return im_1
|
229 |
-
|
230 |
-
def make_grey(image: np.ndarray, grey_value: int = 128):
|
231 |
-
rgb = image[:, :, :3]
|
232 |
-
alpha = image[:, :, 3]
|
233 |
-
opaque_mask = alpha == 255
|
234 |
-
rgb[opaque_mask] = np.stack((grey_value, grey_value, grey_value), axis=-1)
|
235 |
-
return np.dstack((rgb, alpha))
|
236 |
-
|
237 |
-
def create_mask(image: ImageData):
|
238 |
-
bg = image.get("background", None)
|
239 |
-
layers = image.get("layers", [])
|
240 |
-
if bg is None and not layers:
|
241 |
-
raise ValueError("No background or layers provided")
|
242 |
-
mask = layers[0] if layers else bg
|
243 |
-
for layer in layers[1:]:
|
244 |
-
mask = combine_masks(mask, layer)
|
245 |
-
mask = make_grey(mask)
|
246 |
-
return mask
|
247 |
-
|
248 |
-
def get_image(img_input, mask=False, scale=True):
|
249 |
-
if img_input is None:
|
250 |
-
raise ValueError("Image input is None")
|
251 |
|
252 |
-
if isinstance(img_input, dict):
|
253 |
-
img = create_mask(img_input)
|
254 |
-
elif isinstance(img_input, np.ndarray):
|
255 |
-
img = img_input
|
256 |
-
elif isinstance(img_input, str):
|
257 |
-
img = cv2.imread(img_input)
|
258 |
-
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
259 |
-
else:
|
260 |
-
raise ValueError(f"Unsupported image input type: {type(img_input)}")
|
261 |
-
|
262 |
-
if img is None:
|
263 |
-
raise ValueError("Failed to load image")
|
264 |
-
|
265 |
if mask:
|
266 |
if len(img.shape) == 3:
|
267 |
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
268 |
-
|
|
|
269 |
|
270 |
-
if scale
|
271 |
-
return img.astype('
|
272 |
|
273 |
return img
|
274 |
|
@@ -277,11 +210,6 @@ def blend_images(bg_img, obj_img, mask_img, method):
|
|
277 |
obj_img = get_image(obj_img)
|
278 |
mask_img = get_image(mask_img, mask=True)
|
279 |
|
280 |
-
# Ensure mask and images have the same dimensions
|
281 |
-
h, w = bg_img.shape[:2]
|
282 |
-
obj_img = cv2.resize(obj_img, (w, h))
|
283 |
-
mask_img = cv2.resize(mask_img, (w, h))
|
284 |
-
|
285 |
if method == "Poisson":
|
286 |
blend_img = np.zeros_like(bg_img)
|
287 |
for b in range(3):
|
@@ -296,52 +224,35 @@ def blend_images(bg_img, obj_img, mask_img, method):
|
|
296 |
|
297 |
return (blend_img * 255).astype(np.uint8)
|
298 |
|
299 |
-
def update_mask_preview(image):
|
300 |
-
mask = create_mask(image)
|
301 |
-
return mask
|
302 |
-
|
303 |
with gr.Blocks(theme='bethecloud/storj_theme') as iface:
|
304 |
gr.HTML("<h1>Image Blending with Multiple Methods</h1>")
|
305 |
|
306 |
with gr.Row():
|
307 |
-
|
308 |
-
|
309 |
-
|
|
|
|
|
|
|
310 |
with gr.Row():
|
311 |
-
|
312 |
-
label="
|
313 |
-
|
314 |
-
|
315 |
-
eraser=gr.Eraser(),
|
316 |
-
)
|
317 |
-
mask_preview = gr.Image(label="Mask Preview")
|
318 |
-
|
319 |
-
method = gr.Radio(["Poisson", "Mixed Gradient", "Laplacian"], label="Blending Method", value="Poisson")
|
320 |
-
|
321 |
-
blend_button = gr.Button("Blend Images")
|
322 |
|
323 |
output_image = gr.Image(label="Blended Image")
|
324 |
|
325 |
-
mask_img.change(update_mask_preview, inputs=mask_img, outputs=mask_preview)
|
326 |
-
|
327 |
blend_button.click(
|
328 |
blend_images,
|
329 |
inputs=[bg_img, obj_img, mask_img, method],
|
330 |
outputs=output_image
|
331 |
-
)
|
332 |
-
|
333 |
-
def create_image_editor_input(image_path):
|
334 |
-
return {
|
335 |
-
"background": image_path,
|
336 |
-
"layers": [],
|
337 |
-
"composite": image_path
|
338 |
-
}
|
339 |
|
340 |
gr.Examples(
|
341 |
examples=[
|
342 |
-
["img1.jpg", "img2.jpg",
|
343 |
-
["img3.jpg", "img4.jpg",
|
344 |
-
["img6.jpg", "img9.jpg",
|
345 |
],
|
346 |
inputs=[bg_img, obj_img, mask_img, method],
|
347 |
outputs=output_image,
|
|
|
4 |
import scipy.sparse.linalg as splin
|
5 |
from numba import jit
|
6 |
import gradio as gr
|
|
|
|
|
|
|
7 |
|
8 |
@jit(nopython=True)
|
9 |
def build_poisson_sparse_matrix(ys, xs, im2var, img_s, img_t, mask):
|
|
|
184 |
|
185 |
return np.clip(imgs[-1], 0, 1)
|
186 |
|
187 |
+
def get_image(img_path: str, mask: bool=False, scale: bool=True) -> np.array:
|
188 |
+
"""
|
189 |
+
Gets image in appropriate format
|
190 |
+
"""
|
191 |
+
if isinstance(img_path, np.ndarray):
|
192 |
+
img = img_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
else:
|
194 |
+
img = cv2.imread(img_path)
|
195 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Convert BGR to RGB for file inputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
if mask:
|
198 |
if len(img.shape) == 3:
|
199 |
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
200 |
+
_, binary_mask = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
|
201 |
+
return np.where(binary_mask == 255, 1, 0)
|
202 |
|
203 |
+
if scale:
|
204 |
+
return img.astype('double') / 255.0
|
205 |
|
206 |
return img
|
207 |
|
|
|
210 |
obj_img = get_image(obj_img)
|
211 |
mask_img = get_image(mask_img, mask=True)
|
212 |
|
|
|
|
|
|
|
|
|
|
|
213 |
if method == "Poisson":
|
214 |
blend_img = np.zeros_like(bg_img)
|
215 |
for b in range(3):
|
|
|
224 |
|
225 |
return (blend_img * 255).astype(np.uint8)
|
226 |
|
|
|
|
|
|
|
|
|
227 |
with gr.Blocks(theme='bethecloud/storj_theme') as iface:
|
228 |
gr.HTML("<h1>Image Blending with Multiple Methods</h1>")
|
229 |
|
230 |
with gr.Row():
|
231 |
+
with gr.Column():
|
232 |
+
bg_img = gr.Image(label="Background Image", type="numpy", height=300)
|
233 |
+
with gr.Column():
|
234 |
+
obj_img = gr.Image(label="Object Image", type="numpy", height=300)
|
235 |
+
with gr.Column():
|
236 |
+
gr.Image(label="Mask Image", type="numpy", height=300)
|
237 |
with gr.Row():
|
238 |
+
with gr.Column():
|
239 |
+
method = gr.Radio(["Poisson", "Mixed Gradient", "Laplacian"], label="Blending Method", value="Poisson")
|
240 |
+
with gr.Column():
|
241 |
+
blend_button = gr.Button("Blend Images")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
|
243 |
output_image = gr.Image(label="Blended Image")
|
244 |
|
|
|
|
|
245 |
blend_button.click(
|
246 |
blend_images,
|
247 |
inputs=[bg_img, obj_img, mask_img, method],
|
248 |
outputs=output_image
|
249 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
|
251 |
gr.Examples(
|
252 |
examples=[
|
253 |
+
["img1.jpg", "img2.jpg", "mask1.jpg", "Poisson"],
|
254 |
+
["img3.jpg", "img4.jpg", "mask2.jpg", "Mixed Gradient"],
|
255 |
+
["img6.jpg", "img9.jpg", "mask3.jpg", "Laplacian"]
|
256 |
],
|
257 |
inputs=[bg_img, obj_img, mask_img, method],
|
258 |
outputs=output_image,
|