Spaces:
Runtime error
Runtime error
gokaygokay
commited on
Commit
•
903793a
1
Parent(s):
17dd38b
Update app.py
Browse files
app.py
CHANGED
@@ -49,18 +49,21 @@ def poisson_blend(img_s, mask, img_t):
|
|
49 |
d = img_s[ys, xs][:, np.newaxis] - img_s[y_n, x_n]
|
50 |
|
51 |
# Construct sparse matrix A and vector b
|
52 |
-
rows = np.
|
53 |
-
cols = np.
|
54 |
-
data = np.
|
55 |
-
|
56 |
-
mask_n = (im2var[y_n, x_n] != -1).ravel()
|
57 |
-
rows = rows[mask_n]
|
58 |
-
cols = cols[mask_n]
|
59 |
-
data = data[mask_n]
|
60 |
|
61 |
A = sp.sparse.csr_matrix((data, (rows, cols)), shape=(4*nnz, nnz))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
b = d.ravel()
|
63 |
-
b[~mask_n] += img_t[y_n
|
64 |
|
65 |
# Solve the system
|
66 |
v = sp.sparse.linalg.lsqr(A, b)[0]
|
@@ -95,18 +98,21 @@ def mixed_blend(img_s, mask, img_t):
|
|
95 |
d = np.where(np.abs(ds) > np.abs(dt), ds, dt)
|
96 |
|
97 |
# Construct sparse matrix A and vector b
|
98 |
-
rows = np.
|
99 |
-
cols = np.
|
100 |
-
data = np.
|
101 |
-
|
102 |
-
mask_n = (im2var[y_n, x_n] != -1).ravel()
|
103 |
-
rows = rows[mask_n]
|
104 |
-
cols = cols[mask_n]
|
105 |
-
data = data[mask_n]
|
106 |
|
107 |
A = sp.sparse.csr_matrix((data, (rows, cols)), shape=(4*nnz, nnz))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
b = d.ravel()
|
109 |
-
b[~mask_n] += img_t[y_n
|
110 |
|
111 |
# Solve the system
|
112 |
v = sp.sparse.linalg.lsqr(A, b)[0]
|
|
|
49 |
d = img_s[ys, xs][:, np.newaxis] - img_s[y_n, x_n]
|
50 |
|
51 |
# Construct sparse matrix A and vector b
|
52 |
+
rows = np.arange(4*nnz)
|
53 |
+
cols = np.repeat(im2var[ys, xs], 4)
|
54 |
+
data = np.ones(4*nnz)
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
A = sp.sparse.csr_matrix((data, (rows, cols)), shape=(4*nnz, nnz))
|
57 |
+
|
58 |
+
mask_n = (im2var[y_n, x_n] != -1)
|
59 |
+
cols_n = im2var[y_n, x_n][mask_n]
|
60 |
+
rows_n = np.arange(4*nnz)[mask_n.ravel()]
|
61 |
+
data_n = -np.ones(cols_n.size)
|
62 |
+
|
63 |
+
A += sp.sparse.csr_matrix((data_n, (rows_n, cols_n)), shape=(4*nnz, nnz))
|
64 |
+
|
65 |
b = d.ravel()
|
66 |
+
b[~mask_n.ravel()] += img_t[y_n, x_n][~mask_n]
|
67 |
|
68 |
# Solve the system
|
69 |
v = sp.sparse.linalg.lsqr(A, b)[0]
|
|
|
98 |
d = np.where(np.abs(ds) > np.abs(dt), ds, dt)
|
99 |
|
100 |
# Construct sparse matrix A and vector b
|
101 |
+
rows = np.arange(4*nnz)
|
102 |
+
cols = np.repeat(im2var[ys, xs], 4)
|
103 |
+
data = np.ones(4*nnz)
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
A = sp.sparse.csr_matrix((data, (rows, cols)), shape=(4*nnz, nnz))
|
106 |
+
|
107 |
+
mask_n = (im2var[y_n, x_n] != -1)
|
108 |
+
cols_n = im2var[y_n, x_n][mask_n]
|
109 |
+
rows_n = np.arange(4*nnz)[mask_n.ravel()]
|
110 |
+
data_n = -np.ones(cols_n.size)
|
111 |
+
|
112 |
+
A += sp.sparse.csr_matrix((data_n, (rows_n, cols_n)), shape=(4*nnz, nnz))
|
113 |
+
|
114 |
b = d.ravel()
|
115 |
+
b[~mask_n.ravel()] += img_t[y_n, x_n][~mask_n]
|
116 |
|
117 |
# Solve the system
|
118 |
v = sp.sparse.linalg.lsqr(A, b)[0]
|