import cv2 import numpy as np import scipy as sp import scipy.sparse.linalg import gradio as gr import os def get_image(img, mask=False): if mask: return np.where(img > 127, 1, 0) return cv2.cvtColor(img, cv2.COLOR_BGR2RGB).astype('double') / 255.0 def neighbours(i, j, max_i, max_j): pairs = [] for n in [-1, 1]: if 0 <= i+n <= max_i: pairs.append((i+n, j)) if 0 <= j+n <= max_j: pairs.append((i, j+n)) return pairs def poisson_blend(img_s, mask, img_t): img_s_h, img_s_w = img_s.shape nnz = (mask>0).sum() im2var = -np.ones(mask.shape[0:2], dtype='int32') im2var[mask>0] = np.arange(nnz) ys, xs = np.where(mask==1) A = sp.sparse.lil_matrix((4*nnz, nnz)) b = np.zeros(4*nnz) e = 0 for n in range(nnz): y, x = ys[n], xs[n] for n_y, n_x in neighbours(y, x, img_s_h-1, img_s_w-1): A[e, im2var[y][x]] = 1 b[e] = img_s[y][x] - img_s[n_y][n_x] if im2var[n_y][n_x] != -1: A[e, im2var[n_y][n_x]] = -1 else: b[e] += img_t[n_y][n_x] e += 1 A = sp.sparse.csr_matrix(A) v = sp.sparse.linalg.lsqr(A, b)[0] img_t_out = img_t.copy() for n in range(nnz): y, x = ys[n], xs[n] img_t_out[y][x] = v[im2var[y][x]] return np.clip(img_t_out, 0, 1) def mixed_blend(img_s, mask, img_t): img_s_h, img_s_w = img_s.shape nnz = (mask>0).sum() im2var = -np.ones(mask.shape[0:2], dtype='int32') im2var[mask>0] = np.arange(nnz) ys, xs = np.where(mask==1) A = sp.sparse.lil_matrix((4*nnz, nnz)) b = np.zeros(4*nnz) e = 0 for n in range(nnz): y, x = ys[n], xs[n] for n_y, n_x in neighbours(y, x, img_s_h-1, img_s_w-1): ds = img_s[y][x] - img_s[n_y][n_x] dt = img_t[y][x] - img_t[n_y][n_x] d = ds if abs(ds) > abs(dt) else dt A[e, im2var[y][x]] = 1 b[e] = d if im2var[n_y][n_x] != -1: A[e, im2var[n_y][n_x]] = -1 else: b[e] += img_t[n_y][n_x] e += 1 A = sp.sparse.csr_matrix(A) v = sp.sparse.linalg.lsqr(A, b)[0] img_t_out = img_t.copy() for n in range(nnz): y, x = ys[n], xs[n] img_t_out[y][x] = v[im2var[y][x]] return np.clip(img_t_out, 0, 1) def _2d_gaussian(sigma): ksize = np.int(np.ceil(sigma)*6+1) gaussian_1d = cv2.getGaussianKernel(ksize, sigma) return gaussian_1d * np.transpose(gaussian_1d) def _low_pass_filter(img, sigma): return cv2.filter2D(img, -1, _2d_gaussian(sigma)) def _high_pass_filter(img, sigma): return img - _low_pass_filter(img, sigma) def _gaus_pyramid(img, depth, sigma): _im = img.copy() pyramid = [] for d in range(depth-1): _im = _low_pass_filter(_im.copy(), sigma) pyramid.append(_im) _im = cv2.pyrDown(_im) return pyramid def _lap_pyramid(img, depth, sigma): _im = img.copy() pyramid = [] for d in range(depth-1): lap = _high_pass_filter(_im.copy(), sigma) pyramid.append(lap) _im = cv2.pyrDown(_im) return pyramid def _blend(img1, img2, mask): return img1 * mask + img2 * (1.0 - mask) def laplacian_blend(img1, img2, mask, depth=5, sigma=25): mask_gaus_pyramid = _gaus_pyramid(mask, depth, sigma) img1_lap_pyramid, img2_lap_pyramid = _lap_pyramid(img1, depth, sigma), _lap_pyramid(img2, depth, sigma) blended = [_blend(obj, bg, mask) for obj, bg, mask in zip(img1_lap_pyramid, img2_lap_pyramid, mask_gaus_pyramid)][::-1] h, w = blended[0].shape[:2] img1 = cv2.resize(img1, (w, h)) img2 = cv2.resize(img2, (w, h)) mask = cv2.resize(mask, (w, h)) blanded_img = _blend(img1, img2, mask) blanded_img = cv2.resize(blanded_img, blended[0].shape[:2]) imgs = [] for d in range(0, depth-1): gaussian_img = _low_pass_filter(blanded_img.copy(), sigma) reconstructed_img = cv2.add(blended[d], gaussian_img) imgs.append(reconstructed_img) blanded_img = cv2.pyrUp(reconstructed_img) return np.clip(imgs[-1], 0, 1) def load_example_images(bg_path, obj_path, mask_path): bg_img = cv2.imread(bg_path) bg_img = cv2.cvtColor(bg_img, cv2.COLOR_BGR2RGB) obj_img = cv2.imread(obj_path) obj_img = cv2.cvtColor(obj_img, cv2.COLOR_BGR2RGB) mask_img = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE) mask_img = np.where(mask_img > 127, 255, 0).astype(np.uint8) return bg_img, obj_img, mask_img # Modify the blend_images function to accept numpy arrays directly def blend_images(bg_img, obj_img, mask_img, blend_method): bg_img = get_image(bg_img) obj_img = get_image(obj_img) mask_img = get_image(mask_img, mask=True) # Resize mask to match object image size mask_img = cv2.resize(mask_img, (obj_img.shape[1], obj_img.shape[0])) if blend_method == "Poisson": blend_func = poisson_blend elif blend_method == "Mixed Gradient": blend_func = mixed_blend else: # Laplacian return laplacian_blend(obj_img, bg_img, np.stack((mask_img,)*3, axis=-1), 5, 25) blend_img = np.zeros(bg_img.shape) for b in range(3): blend_img[:,:,b] = blend_func(obj_img[:,:,b], mask_img, bg_img[:,:,b].copy()) return (blend_img * 255).astype(np.uint8) examples = [ ["img1.jpg", "img2.jpg", "mask1.jpg", "Poisson"], ["img3.jpg", "img4.jpg", "mask2.jpg", "Mixed Gradient"], ["img6.jpg", "img9.jpg", "mask3.jpg", "Laplacian"] ] iface = gr.Interface( fn=blend_images, inputs=[ gr.Image(label="Background Image", type="numpy"), gr.Image(label="Object Image", type="numpy"), gr.Image(label="Mask Image", type="numpy"), gr.Radio(["Poisson", "Mixed Gradient", "Laplacian"], label="Blending Method") ], outputs=gr.Image(label="Blended Image"), title="Image Blending with Examples", description="Choose from example images or upload your own to blend using different methods.", examples=examples, cache_examples=True ) iface.launch()